留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可膨胀微球/聚二甲基硅氧烷复合介电层的柔性电容式压力传感器

李瑞青 李思明 陈天骄 肖学良

李瑞青, 李思明, 陈天骄, 等. 基于可膨胀微球/聚二甲基硅氧烷复合介电层的柔性电容式压力传感器[J]. 复合材料学报, 2021, 38(7): 2152-2161. doi: 10.13801/j.cnki.fhclxb.20201110.005
引用本文: 李瑞青, 李思明, 陈天骄, 等. 基于可膨胀微球/聚二甲基硅氧烷复合介电层的柔性电容式压力传感器[J]. 复合材料学报, 2021, 38(7): 2152-2161. doi: 10.13801/j.cnki.fhclxb.20201110.005
LI Ruiqing, LI Siming, CHEN Tianjiao, et al. Flexible capacitive pressure sensor based on expandable microsphere/ polydimethylsiloxane composite dielectric layer[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2152-2161. doi: 10.13801/j.cnki.fhclxb.20201110.005
Citation: LI Ruiqing, LI Siming, CHEN Tianjiao, et al. Flexible capacitive pressure sensor based on expandable microsphere/ polydimethylsiloxane composite dielectric layer[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2152-2161. doi: 10.13801/j.cnki.fhclxb.20201110.005

基于可膨胀微球/聚二甲基硅氧烷复合介电层的柔性电容式压力传感器

doi: 10.13801/j.cnki.fhclxb.20201110.005
基金项目: 盛虹-应急保障与公共安全用纤维材料及制品科研攻关项目(2020-fx020026);江苏省研究生科研实践创新计划(KYCY20_1944)
详细信息
    通讯作者:

    肖学良,博士,副教授,硕士生导师,研究方向为智能可穿戴电子服装材料 E-mail:xiao_xueliang@jiangnan.edu.cn

  • 中图分类号: TB332

Flexible capacitive pressure sensor based on expandable microsphere/ polydimethylsiloxane composite dielectric layer

  • 摘要: 为解决含有微结构的柔性电容式压力传感器工作范围较窄的问题,设计了一种基于可膨胀微球/聚二甲基硅氧烷(PDMS)介电层的柔性“三明治”结构电容式压力传感器,并对介电层的结构和形貌进行表征。通过自行搭建的压力设备和电容采集设备研究了基于可膨胀微球/PDMS介电层传感器的力学性能和电学性能。结果表明:通过向PDMS介电层中加入可膨胀微球显著降低了介电层的杨氏模量,同时提高了压力下介电层的介电常数,可膨胀微球/PDMS介电层传感器的工作范围可达400 kPa,最大灵敏度达到0.06 kPa−1,在100 kPa的负载循环下具有较好的重复性和稳定性,且具有较低的迟滞性(4.7%),可以准确迅速地检测到指尖压力,在生命健康等领域具有潜在的应用前景。

     

  • 图  1  微球膨胀前后示意图

    Figure  1.  Schematic diagram of microsphere before and after expansion

    图  2  可膨胀微球/聚二甲基硅氧烷(PDMS)介电层制备流程示意图

    Figure  2.  Preparation diagram of expandable microsphere/polydimethylsiloxane (PDMS) dielectric layer

    图  3  柔性电容式压力传感器实物照片

    Figure  3.  Photographic of flexible capacitive pressure sensor

    图  4  可膨胀微球/PDMS介电层和纯PDMS介电层的SEM图像

    Figure  4.  SEM images of expandable microsphere/PDMS dielectric layer and PDMS dielectric layer

    图  5  可膨胀微球/PDMS-1介电层和纯PDMS介电层的FTIR图谱

    Figure  5.  FTIR spectra of expandable microsphere/PDMS-1 dielectric layer and PDMS dielectric layer

    图  6  可膨胀微球/PDMS-1介电层和纯PDMS介电层的XRD图谱

    Figure  6.  XRD patterns of expandable microsphere/PDMS-1 dielectric layer and PDMS dielectric layer

    图  7  不同微球含量时可膨胀微球/PDMS介电层传感器的灵敏度随加热时间的变化

    Figure  7.  Sensitivity of expandable microsphere/PDMS dielectric layer sensors as a function of heating time with different contents of microspheres

    图  8  不同微球含量的可膨胀微球/PDMS介电层传感器的力学性能

    Figure  8.  Mechanical properties of expandable microsphere/PDMS dielectric layer with different contents of microspheres

    图  9  可膨胀微球/PDMS-1和PDMS介电层传感器的灵敏度

    Figure  9.  Sensitivity of expandable microsphere/PDMS-1 and PDMS dielectric layer sensors

    ΔC—Difference capacitance of sensor; C0—Initial capacitance of sensor

    图  10  可膨胀微球/PDMS介电层传感器的重复性

    Figure  10.  Repeatability of expandable microsphere/PDMS dielectric layer sensor

    图  11  可膨胀微球/PDMS介电层传感器的稳定性

    Figure  11.  Stability of expandable microsphere/PDMS dielectric layer sensor

    图  12  可膨胀微球/PDMS介电层传感器的迟滞性

    Figure  12.  Hysteresis of expandable microsphere/PDMS dielectric layer sensor

    图  13  不同条件制备的可膨胀微球/PDMS介电层传感器的电容变化率曲线

    Figure  13.  Capacitance change rate curves of expandable microsphere/ PDMS dielectric layer sensors prepared under different conditions

    图  14  手指按压时可膨胀微球/PDMS介电层传感器的电容变化率曲线

    Figure  14.  Capacitance change rate curve of expandable microsphere/ PDMS dielectric layer sensor by finger pressing

    图  15  鼠标点击时可膨胀微球/PDMS介电层传感器的电容变化率曲线

    Figure  15.  Capacitance change rate curve of expandable microsphere/ PDMS dielectric layer sensor by mouse clicking

    表  1  不同电容式压力传感器的灵敏度对比

    Table  1.   Sensitivity comparison of different capacitive pressure sensors

    ElectrodeDielectric layerSensitivity/kPa−1Ref.
    Carbon nanotube (CNTs) Ecoflex 0.00059 [28]
    Silver nanowire (AgNW) PDMS 0.00040 [29]
    Conductive knitted fabrics Microporous silicone elastomer 0.01210 [7]
    Multiwall carbon nanotubes (MWNTs) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) composite electrodes Porous PDMS 0.00112 [30]
    CNTs yarn Ecoflex 0.05000 [31]
    Indium tin oxide (ITO)/polyester (PET) Microstructured PDMS 0.05500 [32]
    AgNW Ecoflex 0.00162 [33]
    Conductive woven fabrics Expandable microsphere/PDMS 0.06000 This work
    下载: 导出CSV
  • [1] 于红涛, 孙雷, 肖瑶, 等. 压阻式柔性压力传感器的研究进展[J]. 电子元件与材料, 2019, 38(6):1-11.

    YU H T, SUN L, XIAO Y, et al. Progress in the research of piezo-resistive flexible pressure sensor[J]. Electronic Composites and Materials,2019,38(6):1-11(in Chinese).
    [2] CHEN W F, YAN X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review[J]. Journal of Materials Science & Technology,2020,43:175-188.
    [3] 张明艳, 杨振华, 吴子剑, 等. 新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能[J]. 复合材料学报, 2020, 37(5):175-188.

    ZHANG M Y, YANG Z H, WU Z J, et al. Preparation and properties of a novel sandwich structure polydimethylsiloxane/polyvinylidene fluoride-Ag nanowires/polydimethylsiloxane flexible strain sensor[J]. Acta Materiae Compositae Sinica,2020,37(5):175-188(in Chinese).
    [4] TRUNG T Q, TIEN N T, SEOL Y G, et al. Transparent and flexible organic field-effect transistor for multi-modal sensing[J]. Organic Electronics,2012,13(4):533-540. doi: 10.1016/j.orgel.2011.12.015
    [5] LI X P, LI Y, LI X F, et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets[J]. Journal of Colloid and Interface Science,2019,542:54-62.
    [6] LI H F, DING G F, YANG Z Q. A high sensitive flexible pressure sensor designed by silver nanowires embedded in polyimide (AgNW-PI)[J]. Micromachines,2019,10(3):206. doi: 10.3390/mi10030206
    [7] ATALAY O, ATALAY A, GAFFORD J, et al. A highly sensitive capacitive-based soft pressure sensor based on a conductive fabric and a microporous dielectric layer[J]. Advance Materials Technologies,2018,3(1):1700237. doi: 10.1002/admt.201700237
    [8] HE Z F, CHEN W J, LIANG B H, et al. Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks[J]. ACS Applied Materials & Interfaces,2018,10(15):12816-12823.
    [9] YANG J, LUO S, ZHOU X, et al. Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes[J]. ACS Applied Materials & Interfaces,2019,11(16):14997-15006.
    [10] LEE J, KWON H, SEO J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics[J]. Advanced Materials,2015,27(15):2433-2439. doi: 10.1002/adma.201500009
    [11] LIU S, LU J, SHIEH H D. Influence of permittivity on the sensitivity of porous elastomer-based capacitive pressure sensors[J]. IEEE Sensors Journal,2018,18(5):1870-1876. doi: 10.1109/JSEN.2017.2789242
    [12] 杜青, 李刚, 胡杰, 等. 基于C-PDMS介质层的柔性电容式传感器研究[J]. 仪表技术与传感器, 2019(2):1-3, 8. doi: 10.3969/j.issn.1002-1841.2019.09.001

    DU Q, LI G, HU J, et al. Flexible capacitive sensor based on C-PDMS composites as dielectric layer[J]. Instrument Technique and Sensor,2019(2):1-3, 8(in Chinese). doi: 10.3969/j.issn.1002-1841.2019.09.001
    [13] 高会, 黄龙男, 刘彦菊, 等. 形状记忆聚合物在柔性光/电子器件领域的发展与挑战[J]. 复合材料学报, 2018, 35(12):3255-3246.

    GAO H, HUANG L N, LIU Y J, et al. Developments and challenges of shape memory polymers in flexible optoelectronics[J]. Acta Materiae Compositae Sinica,2018,35(12):3255-3246(in Chinese).
    [14] PANG C, KOO J H, NGUYEN A, et al. Sensors: Highly skin-conformal microhairy sensor for pulse signal amplification[J]. Advanced Materials,2015,27(4):589.
    [15] XU F L, LI X Y, SHI Y, et al. Recent developments for flexible pressure sensors: A review[J]. Micromachines,2018,9(11):580. doi: 10.3390/mi9110580
    [16] WEHNER M, TRUBY R L, FITZGERALD D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature,2016,536(7617):451-455. doi: 10.1038/nature19100
    [17] MA L Q, SHUAI X T, HU Y G, et al. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer[J]. Journal of Materials Chemistry C, 2018, 6(48): 13232-13240.
    [18] LUO Y S, SHAO J Y, CHEN S R, et al. Flexible capacitive pressure sensor enhanced by tilted micropillar arrays[J]. ACS Applied Materials & Interfaces,2019,11(19):17796-17803.
    [19] KWON D, LEE T I, KIM M S, et al. Porous dielectric elastomer based ultra-sensitive capacitive pressure sensor and its application to wearable sensing device[C]//2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). Anchorage: IEEE, 2015.
    [20] WAN Y B, QIU Z G, HONG Y, et al. A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures[J]. Advanced Electronic Materials,2018,4(4):1700586. doi: 10.1002/aelm.201700586
    [21] GUO Z X, MO L X, DING Y, et al. Printed and flexible capacitive pressure sensor with carbon nanotubes based composite dielectric layer[J]. Micromachines,2019,10(11):715. doi: 10.3390/mi10110715
    [22] LEE B Y, KIM J, KIM H, et al. Low-cost flexible pressure sensor based on dielectric elastomer film with micro-pores[J]. Sensors and Actuators A: Physical,2016,240:103-109. doi: 10.1016/j.sna.2016.01.037
    [23] 李思明, 吴官正, 胡雨洁, 等. 压力分布监测袜的制备及其传感器性能[J]. 纺织学报, 2019, 40(7):138-144.

    LI S M, WU G Z, HU Y J, et al. Preparation of pressure distribution monitoring socks and related sensing properties[J]. Journal of Textile Research,2019,40(7):138-144(in Chinese).
    [24] KANG S B, LEE J, LEE S, et al. Highly sensitive pressure sensor based on bioinspired porous structure for real-time tactile sensing[J]. Advanced Electronic Materials,2016,2(12):1600356. doi: 10.1002/aelm.201600356
    [25] NIU H S, GAO S, YUE W J, et al. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure[J]. Small,2020,16(4):1904774. doi: 10.1002/smll.201904774
    [26] GUO Y J, GAO S, YUE W J, et al. Anodized aluminum oxide-assisted low-cost flexible capacitive pressure sensors based on double-sided nanopillars by a facile fabrication method[J]. ACS Applied Materials & Interfaces,2019,11(51):48594-48602.
    [27] LI S M, GU Y J, WU G Z, et al. A flexible piezoresistive sensor with highly elastic weave pattern for motion detection[J]. Smart Materials and Structures,2019,28(3):035020. doi: 10.1088/1361-665X/ab0002
    [28] WANG X, LI T, ADAM J, et al. Transparent, stretchable, carbon-nanotube-inlaid conductors enabled by standard replication technology for capacitive pressure, strain and touch sensors[J]. Journal of Materials Chemistry A,2013,11(1):3580-3586.
    [29] ZHANG B, XIANG Z M, ZHU S W, et al. Dual functional transparent film for proximity and pressure sensing[J]. Nano Research,2014,10(7):1488-1496.
    [30] PARK S W, DAS P S, PARK J Y. Development of wearable and flexible insole type capacitive pressure sensor for continuous gait signal analysis[J]. Organic Electronics,2018,53:213-220.
    [31] KIM S Y, PARK S, PARK H W, et al. Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli[J]. Advanced Materials,2015,27(28):4178-4185. doi: 10.1002/adma.201501408
    [32] MAHATA C, ALGADI H, LEE J, et al. Biomimetic-inspired micro-nano hierarchical structures for capacitive pressure sensor applications[J]. Measurement,2020,151:107095.
    [33] YAO S S, ZHU Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires[J]. Nanoscale,2014,6(4):2345-2352. doi: 10.1039/c3nr05496a
    [34] CHENG W, WANG J, MA Z, et al. Flexible pressure sensor with high sensitivity and low hysteresis based on a hierarchically microstructured electrode[J]. IEEE Electronic Device Letters,2018,39(2):288-291. doi: 10.1109/LED.2017.2784538
    [35] QIU J, GUO X H, CHU R, et al. Rapid-response, low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin[J]. ACS Applied Materials & Interfaces,2019,11(43):40716-40725.
    [36] GUO X H, HUANG Y, CAI X, et al. Capacitive wearable tactile sensor based on smart textile substrate with carbon black/silicone rubber composite dielectric[J]. Measurement Science and Technology,2016,27(4):04105.
    [37] RANA A, ROBERGE J P, DUCHAINE V. An improved soft dielectric for a highly sensitive capacitive tactile sensor[J]. IEEE Sensors Journal,2016,16(22):7852-7863.
    [38] LI M M, LIANG J M, WANG X D, et al. Ultra-sensitive flexible pressure sensor based on microstructured electrode[J]. Sensors,2020,20(2):371. doi: 10.3390/s20020371
    [39] MANNSFELD S C B, TEE B C K, STOLTENBERG R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature Materials,2010,9(10):859-864. doi: 10.1038/nmat2834
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  1534
  • HTML全文浏览量:  529
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-03
  • 录用日期:  2020-10-28
  • 网络出版日期:  2020-11-10
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回