留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热循环对片层石墨/铝复合材料的强度和热导率的影响

刘晓云 王文广 陈礼清 王东 姜月秋 肖伯律 马宗义

刘晓云, 王文广, 陈礼清, 等. 热循环对片层石墨/铝复合材料的强度和热导率的影响[J]. 复合材料学报, 2021, 38(4): 1192-1199. doi: 10.13801/j.cnki.fhclxb.20201110.001
引用本文: 刘晓云, 王文广, 陈礼清, 等. 热循环对片层石墨/铝复合材料的强度和热导率的影响[J]. 复合材料学报, 2021, 38(4): 1192-1199. doi: 10.13801/j.cnki.fhclxb.20201110.001
LIU Xiaoyun, WANG Wenguang, CHEN Liqing, et al. Effect of thermal cycling treatment on the strength and thermal conductivity of graphite flakes/Al composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1192-1199. doi: 10.13801/j.cnki.fhclxb.20201110.001
Citation: LIU Xiaoyun, WANG Wenguang, CHEN Liqing, et al. Effect of thermal cycling treatment on the strength and thermal conductivity of graphite flakes/Al composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1192-1199. doi: 10.13801/j.cnki.fhclxb.20201110.001

热循环对片层石墨/铝复合材料的强度和热导率的影响

doi: 10.13801/j.cnki.fhclxb.20201110.001
基金项目: 国家重点研发计划(2017YFB0703104);辽宁省自然科学基金(2019-ZD-0253);辽宁省“兴辽英才计划”创新领军人才(XLYC1902095)
详细信息
    通讯作者:

    王东,博士,研究员,硕士生导师,研究方向为金属基复合材料  E-mail:dongwang@imr.ac.cn

  • 中图分类号: TN305;TB331

Effect of thermal cycling treatment on the strength and thermal conductivity of graphite flakes/Al composites

  • 摘要: 采用粉末冶金法制备片层石墨增强Al基复合材料(50vol%Gf/6061Al),Gf与Al基体结合紧密,界面处无裂纹、孔洞等缺陷。复合材料在−50~120℃温度范围内分别循环10次、50次、100次和200次,研究不同的循环次数对材料组织和性能的影响。结果表明,循环不同次数时材料的密度没有明显的变化,但随着循环次数的增加,在热应力的作用下Gf发生破裂,材料的强度和热导率均有所下降,当循环次数达到100次时,性能下降速度最快,与未循环样品相比,抗弯强度降低27.4%,热导率下降11.5%。进一步增加循环次数,破碎的Gf和开裂的界面可以有效缓解冷热循环导致的热应力,Gf破坏程度减缓,当循环次数为200次时,与未循环样品相比抗弯强度降低32%,热导率下降13.1%,性能降低趋于平缓。

     

  • 图  1  片层石墨(Gf)的SEM图像

    Figure  1.  SEM images of different-sized graphite flakes (Gf)

    图  2  50vol%Gf/6061Al分布与界面的SEM图像

    Figure  2.  SEM images of 50vol%Gf/6061Al composites

    图  3  −50º~120℃冷热循环不同次数50vol%Gf/6061Al样品的金相照片

    Figure  3.  Optic photos of the 50vol%Gf/6061Al specimens after different thermal-cold cyclings from −50℃ to 120℃

    图  4  −50~120℃冷热循环200次后50vol%Gf/6061Al复合材料界面的SEM图像

    Figure  4.  SEM image of the interface between Gf and Al matrix by 200 thermal-cold cycling testing during −50-120℃

    图  5  50vol%Gf/6061Al在−50~120℃循环后的性能

    Figure  5.  Properties of 50vol%Gf/6061Al during −50-120℃ thermal-cold cycle testing

    图  6  −50~120℃进行不同次数冷热循环50vol%Gf/6061Al实验样品抗弯强度的断口形貌

    Figure  6.  Fracture morphologies of the 50vol%Gf/6061Al specimens under different cycles by thermal cycle testing during −50-120℃

  • [1] MALLIK S, EKERE N, BEST N, et al. Investigation of thermal management materials for automotive electronic control units[J]. Applied Thermal Engineering,2011,31(2-3):355-362. doi: 10.1016/j.applthermaleng.2010.09.023
    [2] 李志强, 谭占秋, 范根莲, 等. 高效热管理用金属基复合材料研究进展[J]. 中国材料进展, 2013(7):431-441.

    LI Zhiqiang, TAN Zhanqiu, FAN Genlian, et al. Progress of metal matrix composites for efficient thermal management applications[J]. Materials China,2013(7):431-441(in Chinese).
    [3] MATHIAS J D, GEFFROY P M, SILVAIN J F. Architectural optimization for microelectronic packaging[J]. Applied Thermal Engineering,2009,29(11-12):2391-2395. doi: 10.1016/j.applthermaleng.2008.12.037
    [4] SIDHU SS, KUMAR S, BATISH A. Metal matrix composites for thermal management: A review[J]. Critical Reviews in Solid State and Materials Sciences,2016,41(2):132-157. doi: 10.1080/10408436.2015.1076717
    [5] 曾婧, 彭超群, 王日初, 等. 电子封装用金属基复合材料的研究进展[J]. 中国有色金属学报, 2015(12):3255-3270.

    ZENG J, PENG C Q, WANG R C, et al. Research progress on metal matrix composites for electronic packaging[J]. The Chinese Journal of Nonferrous Metals,2015(12):3255-3270(in Chinese).
    [6] XUE C, YU J K. Enhanced thermal transfer and bending strength of SiC/Al composite with controlled interfacial reaction[J]. Materials & Design,2014,53:74-78.
    [7] ZHANG W L, DING D Y, GAO P. High volume fraction Si particle-reinforced aluminium matrix composites fabricated by a filtration squeeze casting route[J]. Materials & Design,2016,90:834-838.
    [8] LIU X Y, WANG W G, WANG D, et al. Effect of nanometer TiC coated diamond on the strength and thermal conductivity of diamond/Al composites[J]. Materials Chemistry and Physics,2016,182:256-262. doi: 10.1016/j.matchemphys.2016.07.030
    [9] RAPE A, LIU X, KULKARNI A, et al. Alloy development for highly conductive thermal management materials using copper-diamond composites fabricated by field assisted sintering technology[J]. Journal of Materials Science,2013,48:1262-1267. doi: 10.1007/s10853-012-6868-2
    [10] 刘晓云, 王文广, 王东, 等. 片层石墨尺寸对片层石墨/铝复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53:869-878. doi: 10.11900/0412.1961.2017.00015

    LIU X Y, WANG W G, WANG D, et al. Effect of graphite flake size on the strength and thermal conductivity of graphite flakes/Al composites[J]. Acta Metallurgica Sinica,2017,53:869-878(in Chinese). doi: 10.11900/0412.1961.2017.00015
    [11] SHAO X Z, SUM W C, JIN Z X, et al. Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite[J]. Carbon,2012,50:5052. doi: 10.1016/j.carbon.2012.06.045
    [12] CHAMROUNE N, MWREIB D, DWLANGE F, et al. Effect of flake powder metallurgy on thermal conductivity of graphite flakes reinforced aluminum matrix composites[J]. Journal of Materials Science,2018,53:8180-8192. doi: 10.1007/s10853-018-2139-1
    [13] ZHOU C, CHEN D, ZHANG X B, et al. The roles of geometry and topology structures of graphite fillers on thermal conductivity of the graphite/aluminum composites[J]. Physics Letters A,2015,379:452-457. doi: 10.1016/j.physleta.2014.10.048
    [14] LIU B, ZHANG D Q, LI X F, et al. Effect of graphite flakes particle sizes on the microstructure and properties of graphite flakes/copper composites[J]. Journal of Alloys and Compounds,2018,766:382-390. doi: 10.1016/j.jallcom.2018.06.129
    [15] KURITA H, MIYAZAKI T, KAWASAKI, A, et al. Interfacial microstructure of graphite flake reinforced aluminum matrix composites fabricated via hot pressing[J]. Composites: Part A,2015,73:125-131. doi: 10.1016/j.compositesa.2015.03.013
    [16] LI W J, LIU Y, WU G H. Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting[J]. Carbon,2015,95:545-551. doi: 10.1016/j.carbon.2015.08.063
    [17] HAN X P, HUANG Y, ZHOU S H, et al. Effects of graphene content on thermal and mechanical properties of chromium-coated graphite flakes/Si/Al composites[J]. Journal of Materials Science: Materials in Electronics,2018,29:4179-4189. doi: 10.1007/s10854-017-8363-7
    [18] YI L F, YOSHIDA N, ONDA T. Effect of processing conditions on microstructure and thermal conductivity of hot-extruded aluminum/graphite composites[J]. Materials Transactions,2019,60:136-143. doi: 10.2320/matertrans.M2018220
    [19] XUE C, BAI H, TAO P F. Analysis on thermal conductivity of graphite/Al composite by experimental and modeling study[J]. Journal of Materials Engineering and Performance,2017,26:327-334. doi: 10.1007/s11665-016-2447-z
    [20] XIE H, YU J K, JIANG D P, et al. Microstructure and thermal properties of Cr7C3 coated graphite flakes/Al composites[J]. Materials Research Express,2019,6:066308. doi: 10.1088/2053-1591/ab0d9f
    [21] HUANG Y, PENG X Y, YANG Y W, et al. Electroless Cu/Ni plating on graphite flake and the efects to the properties of graphite flake/Si/Al hybrid composites[J]. Metals and Materials International,2018,24:1172-1180. doi: 10.1007/s12540-018-0052-4
    [22] XUE C, BAI H, TAO P F, et al. Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nano-layer on graphite surface[J]. Materials and Design,2016,108:250-258. doi: 10.1016/j.matdes.2016.06.122
    [23] WANG C, BAI H, XUE C, et al. On the influence of carbide coating on the thermal conductivity and flexural strength of X (X=SiC, TiC) coated graphite/Al composites[J]. RSC Advances,2016,6:107483. doi: 10.1039/C6RA21754K
    [24] OZDEMIR I, TOPARLI M. An investigation of Al-SiCp composites under thermal cycling[J]. Journal of Composite Materials,2003,37:1839-1850. doi: 10.1177/002199803036245
    [25] HUANG Y, OUYANG Q B, GUO Q, et al. Graphite film/aluminum laminate composites with ultrahigh thermal conductivity for thermal management applications[J]. Materials & Design,2016,90:508-515.
  • 加载中
图(7)
计量
  • 文章访问数:  1031
  • HTML全文浏览量:  344
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-03
  • 录用日期:  2020-11-03
  • 网络出版日期:  2020-11-10
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回