留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯/再生水泥基复合材料的制备

桂灿 徐子芳 江玉洁 李世豪

桂灿, 徐子芳, 江玉洁, 等. 氧化石墨烯/再生水泥基复合材料的制备[J]. 复合材料学报, 2021, 38(5): 1526-1534. doi: 10.13801/j.cnki.fhclxb.20201106.001
引用本文: 桂灿, 徐子芳, 江玉洁, 等. 氧化石墨烯/再生水泥基复合材料的制备[J]. 复合材料学报, 2021, 38(5): 1526-1534. doi: 10.13801/j.cnki.fhclxb.20201106.001
GUI Can, XU Zifang, JIANG Yujie, et al. Preparation of graphene oxide/recycled cement-based composite materials[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1526-1534. doi: 10.13801/j.cnki.fhclxb.20201106.001
Citation: GUI Can, XU Zifang, JIANG Yujie, et al. Preparation of graphene oxide/recycled cement-based composite materials[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1526-1534. doi: 10.13801/j.cnki.fhclxb.20201106.001

氧化石墨烯/再生水泥基复合材料的制备

doi: 10.13801/j.cnki.fhclxb.20201106.001
基金项目: 2017年度安徽高校省级自然科学重大研究项目(KJ2017ZD08);2019年度省级大学生创新创业训练计划项目(S201910361140;S201910361150X)
详细信息
    通讯作者:

    徐子芳,博士,教授,硕士生导师,研究方向为建筑功能材料  E-mail:zhfxubao@163.com

  • 中图分类号: X705

Preparation of graphene oxide/recycled cement-based composite materials

  • 摘要: 基于建筑垃圾再生细骨料替代天然砂,进行氧化石墨烯(GO)改性再生水泥基复合材料的综合物理性能和水化机制研究。采用超声分散GO及振动搅拌制备再生水泥基复合材料,综合耐久性能测试结果表明:和不掺GO再生水泥基复合材料相比,添加0.03% GO改性7 d龄期强度的GO/再生水泥基复合材料抗折和抗压强度分别提高了16%和21%;添加0.02% GO改性的28 d龄期强度的GO/再生水泥基复合材料抗折和抗压分别提高了13.7%和13.6%。GO/再生水泥基复合材料龄期7 d耐候、50次冻融循环后力学性能均良好;氯离子含量皆小于0.06%。放射性检测结果表明:GO/再生水泥基复合材料内照射指数IRa和外照射指数Ir均属于A类建筑材料。通过XRD、TG-DTA、SEM等手段对GO/再生水泥基复合材料水化机制研究表明:GO促进了钙矾石(AFt)晶体的大量生成及胶凝孔中存在更多的自由水,且对后期氢氧化钙(CH)的产生有抑制作用,进而提高了GO/再生水泥基复合材料综合物理性能。

     

  • 图  1  GO的TEM图像((a), (b))、XRD图谱(c)和FTIR图谱(d)

    Figure  1.  TEM images ((a), (b)), XRD pattern (c) and FTIR spectra (d) of GO

    图  2  龄期水化GO/再生水泥基复合材料的强度变化: (a) 7 d;(b) 28 d

    Figure  2.  Intensity change of aged hydrated GO/recycled cement-based composites: (a) 7 d; (b) 28 d

    图  3  GO/再生水泥基复合材料耐候抗冻融性能: (a)抗冻融试验;(b)耐候试验

    Figure  3.  Weather resistance, freeze-thaw resistance of GO/recycled cement-based composites: (a) Freeze-thaw resistance test; (b) Weather resistance test

    图  4  龄期水化GO/再生水泥基复合材料XRD图谱: (a) 7 d; (b) 28 d

    Figure  4.  XRD patterns of aged hydrated GO/recycled cement-based composites: (a) 7 d; (b) 28 d

    图  5  龄期水化GO/再生水泥基复合材料的TG和DTA曲线: (a) 7 d; (b) 28 d

    Figure  5.  TG-DTA curve of aged hydrated GO/recycled cement-based composites: (a) 7 d; (b) 28 d

    图  6  龄期水化GO/再生水泥基复合材料的SEM图像

    Figure  6.  SEM images of aged hydrated GO/recycled cement-based composites

    表  1  建筑垃圾的组成成分

    Table  1.   Composition of construction waste

    CompsitionAbandoned concreteTileSandWoodOthers
    Content/% 67 16 9 3 5
    下载: 导出CSV

    表  2  再生细骨料的物理性能

    Table  2.   Physical properties of recycled fine aggregate

    Apparent density/(kg·m−2)Bulk density/(kg·m−2)Water absorption rate/%
    2334.81204.75.6
    下载: 导出CSV

    表  3  标准砂的技术指标

    Table  3.   Technical Specifications of Standard Sand

    Quality/gSilica content/%Loss on ignition/%Mud content/%
    1350±5980.30.01
    下载: 导出CSV

    表  4  水泥的化学成分和矿物组成

    Table  4.   Chemical composition and mineral composition of cement

    Clinker chemical composition/% Clinker mineral composition/%
    SiO2 Al2O3 CaO MgO SO3 f-CaO C3S C2S C3A C4AF
    24.58 6.45 67.8 3.39 0.38 0.73 51.99 23.88 9.20 13.81
    下载: 导出CSV

    表  5  氧化石墨烯(GO)的物理化学性能

    Table  5.   Physical and chemical properties of graphene oxide (GO)

    ColourThickness/μmSingle layer/μmPeelable rate/%Tap density/(g·L−1)Graininess/meshOxygen content/wt%
    Brownish yellow ~1 0.2−10 >95 ~500 <80 ~51.6
    下载: 导出CSV

    表  6  GO/再生水泥基复合材料的配比

    Table  6.   Experimental ratio of GO/recycled cement-based composites

    NumberCement/gSand/gReclaimed sand/gWater/mLGO/%Fluidity/mm
    GO/recycled cement-0 450 945 405 252 0 187
    GO/recycled cement-1 450 945 405 252 0.01 194
    GO/recycled cement-2 450 945 405 252 0.02 189
    GO/recycled cement-3 450 945 405 252 0.03 185
    GO/recycled cement-4 450 945 405 252 0.04 182
    下载: 导出CSV

    表  7  GO/再生水泥基复合材料中氯离子含量

    Table  7.   Chloride content in GO/recycled cement-based composites

    ParameterGO/recycled
    cement-0
    GO/recycled
    cement-1
    GO/recycled
    cement-2
    GO/recycled
    cement-3
    GO/recycled
    cement-4
    Cl concentration/(mol·L−1) 0.00016839 0.00012556 0.00019146 0.00014859 0.00020216
    Cl mass percentage/% 0.005818 0.004457 0.006797 0.005277 0.007177
    下载: 导出CSV

    表  8  GO/再生水泥基复合材料的内照射指数IRa和外照射指数Ir

    Table  8.   Internal exposure index IRa and external exposure index Ir of GO/recycled cement-based composites

    ParameterGO/recycled
    cement-0
    GO/recycled
    cement-1
    GO/recycled
    cement-2
    GO/recycled
    cement-3
    GO/recycled
    cement-4
    IRa 0.07 0.08 0.08 0.06 0.09
    Ir 0.15 0.14 0.15 0.14 0.16
    Grade A A A A A
    下载: 导出CSV
  • [1] 易超. 建筑垃圾资源化制备再生骨料混凝土的研究[D]. 广州: 暨南大学, 2014.

    YI C. The study on the resource of construction waste for recycled aggregate concrete[D]. Guangzhou: Jinan University, 2014(in Chinese).
    [2] 张向冈, 汪昉, 杨健辉, 等. 再生轻骨料水泥砂浆抗压强度试验研究[J]. 混凝土, 2017(4):129-132. doi: 10.3969/j.issn.1002-3550.2017.04.032

    ZHANG X G, WANG F, YANG J H, et al. Experim ental study on compressive strength of cement mortar with recycled light weight aggregate[J]. Concrete,2017(4):129-132(in Chinese). doi: 10.3969/j.issn.1002-3550.2017.04.032
    [3] TUYAN M, MARDANI-AGHABAGLOU A, RAMYAR K. Freeze-thaw resistance, mechanical and transport properties of self-consolidating concrete incorporating coarse recycled concrete aggregate[J]. Materials and Design,2014,53:983-991. doi: 10.1016/j.matdes.2013.07.100
    [4] GAO C, HUANG L, YAN L B, et al. Behavior of glass and carbon FRP tube encased recycled aggregate concrete with recycled clay brick aggregate[J]. Composite Structures,2016,155:245-254. doi: 10.1016/j.compstruct.2016.08.021
    [5] DONG L L, CHEN W G, DENG N, et al. A novel fabrication of graphene by chemical reaction with a green reductant[J]. Chemical Engineering Journal,2016,306:754-762. doi: 10.1016/j.cej.2016.08.027
    [6] YANG H B, CUI H Z, TANG W C, et al. A critical review on research progress of graphene/cement based composites[J]. Composites Part A: Applied Science and Manufacturing,2017,102:273-296. doi: 10.1016/j.compositesa.2017.07.019
    [7] NIETO A, BISHT A, LAHIRI D, et al. Graphene reinforced metal and ceramic matrix composites: A review[J]. Metallurgical Reviews,2016,62(5):241-302.
    [8] LEE C G, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [9] 雷斌, 邹俊, 饶春华, 等. 氧化石墨烯对再生混凝土改性试验研究[J]. 建筑结构学报, 2016, 37(s2):103-108.

    LEI B, ZOU J, RAO C H, et al. Experimental study on modification of recycled concrete with graphone oxide[J]. Journal of Building Structures,2016,37(s2):103-108(in Chinese).
    [10] 郭凯, 苗航, 周静海. 氧化石墨烯对再生混凝土气体渗透性能影响[J]. 沈阳建筑大学学报(自然科学版), 2019, 35(4):692-698.

    GUO K, MIAO H, ZHOU J H. Effect of graphene oxide on gas permeability of recycled concrete[J]. Journal of Shenyang Jianzhu University (Natural Science),2019,35(4):692-698(in Chinese).
    [11] LUO J L, CHEN S C, LI Q Y, et al. Influence of graphene oxide on the mechanical properties, fracture toughness, and microhardness of recycled concrete[J]. Nanomaterials,2019,9(3):325. doi: 10.3390/nano9030325
    [12] WU J L, DAN Z, DUAN H B, et al. Performance enhancement and environmental impact of cement composites containing graphene oxide with recycled fine aggregates[J]. Journal of Cleaner Production,2018,194:193-202. doi: 10.1016/j.jclepro.2018.05.108
    [13] WU J L, WEI J J, MA H Y, et al. Dynamic mechanical properties and microstructure of graphene oxide nanosheets reinforced cement composites[J]. Nanomaterials. 2017, 7(3): 407.
    [14] 彭晖, 戈娅萍, 杨振天, 等. 氧化石墨烯增强水泥基复合材料的力学性能及微观结构[J]. 复合材料学报, 2018, 35(8):2132-2139.

    PENG H, GE Y P, YANG Z T, et al. Mechanical properties and microstructure of graphene oxide reinforced cement-based composites[J]. Acta Materiae Compositae Sinica,2018,35(8):2132-2139(in Chinese).
    [15] 中国国家标准化委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—1999[S]. 北京: 中国标准出版社, 1999.

    Standardization Administration of the People’s Republic of China. Method of testing cements: Determination of strength: GB/T 17671—1999[S]. Beijing: China Standards Press, 1999(in Chinese).
    [16] 中国国家标准化委员会. 水泥胶砂流动度测定方法: GB/T 2419—2016[S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People’s Republic of China. Test mathod for fluidity of cement mortar: GB/T 2419—2016[S]. Beijing: China Standards Press, 2016(in Chinese).
    [17] 中国国家标准化委员会. 混凝土结构耐久性设计规范: GB/T 50476—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Code for durability design of concrete structures: GB/T 50476—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [18] 中华人民共和国住房和城乡建设部. 混凝土中氯离子含量检测技术规程: JGJ/T 322—2013[S]. 北京: 中国建筑工业出版社, 2013.

    Ministry of Housing nd Urban-Rural Development of the People’s Republic of China. Technical specification for test of chloride ion content in concrete: JGJ/T 322—2013[S]. Beijing: China Building Industry Press, 2013(in Chinese).
    [19] 中国国家标准化委员会. 建筑材料放射性核素限量: GB 6566—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People’s Republic of China. Limits of radionuclides in building materials: GB 6566—2010[S]. Beijing: China Standards Press, 2010(in Chinese).
    [20] YU S, ZHANG D, YANG C, et al. Effect of graphene oxide on the rheological properties of cement pastes[J]. Construction and Building Materials,2015,96:20-28. doi: 10.1016/j.conbuildmat.2015.07.181
    [21] 袁小亚, 杨雅玲, 周超, 等. 氧化石墨烯改性水泥砂浆力学性能及微观机理研究[J]. 重庆交通大学学报(自然科学版), 2017, 36(12):36-42.

    YUAN X Y, YANG Y L, ZHOU C, et al. Mechanical properties and microcosmic mechanism of cement mortar modified by graphene oxide[J]. Journal of Chongqing Jiaotong Univesity (Natural Science),2017,36(12):36-42(in Chinese).
    [22] QURESHI T S, PANESAR D K. Impact of graphene oxide and highly reduced graphene oxide on cement based composites[J]. Construction and Building Materials,2019,206:71-83.
    [23] LV S H, HU H Y, ZHANG J, et al. Fabrication of GO/cement composites by incorporation of few-layered GO nanosheets and characterization of their crystal/chemical structure and properties[J]. Nanomaterials,2017,7(12):457. doi: 10.3390/nano7120457
    [24] INDUKURI C S R, NERELLA R, MADDURU S R C. Effect of graphene oxide on microstructure and strengthened properties of fly ash and silica fume based cement composites[J]. Construction and Building Materials,2019,229:116863. doi: 10.1016/j.conbuildmat.2019.116863
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  1270
  • HTML全文浏览量:  538
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 录用日期:  2020-11-03
  • 网络出版日期:  2020-11-09
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回