留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔Co3O4纳米纤维用于锂-空气电池高性能正极催化剂

李华 李靖靖 王焕锋

李华, 李靖靖, 王焕锋. 多孔Co3O4纳米纤维用于锂-空气电池高性能正极催化剂[J]. 复合材料学报, 2021, 38(7): 2305-2312. doi: 10.13801/j.cnki.fhclxb.20201030.006
引用本文: 李华, 李靖靖, 王焕锋. 多孔Co3O4纳米纤维用于锂-空气电池高性能正极催化剂[J]. 复合材料学报, 2021, 38(7): 2305-2312. doi: 10.13801/j.cnki.fhclxb.20201030.006
LI Hua, LI Jingjing, WANG Huanfeng. Porous Co3O4 nanofibers applied as an efficient cathode catalyst for Li-air batteries[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2305-2312. doi: 10.13801/j.cnki.fhclxb.20201030.006
Citation: LI Hua, LI Jingjing, WANG Huanfeng. Porous Co3O4 nanofibers applied as an efficient cathode catalyst for Li-air batteries[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2305-2312. doi: 10.13801/j.cnki.fhclxb.20201030.006

多孔Co3O4纳米纤维用于锂-空气电池高性能正极催化剂

doi: 10.13801/j.cnki.fhclxb.20201030.006
基金项目: 河南省科技攻关项目(202102210242);河南省高等学校重点科研项目(21A150055;17A550020);郑州工程技术学院科技创新团队培育基金(CXTD2018K3);郑州工程技术学院青年创新基金(QNCXJJ2019K2)
详细信息
    通讯作者:

    王焕锋,博士,讲师,研究方向为能源材料 E-mail:whfzzgc@163.com

  • 中图分类号: O643.36

Porous Co3O4 nanofibers applied as an efficient cathode catalyst for Li-air batteries

  • 摘要: 采用静电纺丝技术结合高温煅烧方法,以乙酰丙酮钴(Co(C5H7O2)3)为前驱物,制备了由Co3O4纳米颗粒组成的多孔纳米纤维(Co3O4 NFs),其比表面积高达83 m2·g−1,并将制得的多孔Co3O4 NFs用于锂-空气电池催化剂。多孔Co3O4 NFs为电池反应提供了充足的活性位点及反应物的传输通道,有利于电池反应的顺利进行,使电池的放电容量得到极大地提高。另外,Co3O4催化剂的加入提高了电极的催化活性,较大程度降低了电池的过电位。值得注意的是,Co3O4催化剂的加入同时调控了锂-空气电池放电产物Li2O2的形貌,得到的放电产物Li2O2尺寸更小,在电极表面分布更为均匀,该形态的Li2O2在充电过程中更容易被分解,有利于提高电池的充电效率,同时电极的体积效应也可得到极大缓解。得益于以上优势,基于多孔Co3O4 NFs/炭黑Super P (Co3O4 NFs/SP)正极的锂-空气电池的电化学性能得到较大提高,50 mA·g−1电流密度下Co3O4 NFs/SP的放电容量高达10600 mA·h·g−1,电池可实现100次的充放电循环。

     

  • 图  1  多孔CO3O4纳米纤维(Co3O4 NFs)合成示意图

    Figure  1.  Synthesis strategy of porous Co3O4 nanofibers (Co3O4 NFs)

    PVP—Polyvinylpyrrolidone

    图  2  前驱物纳米纤维(a)和Co3O4 NFs (b)的SEM图像

    Figure  2.  SEM images of fabricated nanofibers (a) and Co3O4 NFs (b)

    图  3  Co3O4 NFs的XRD图谱(a)和N2吸附-脱附等温曲线及孔径分布(b)

    Figure  3.  XRD pattern (a) and N2 adsorption-desorption isotherms and pore-size distribution (inset) (d) of porous Co3O4 NFs

    图  4  SP和Co3O4 NFs/SP电极的锂-空气电池的首次充放电曲线(a)和循环伏安曲线(b)

    Figure  4.  First discharge-charge curves (a) and cyclic voltammetry curves (b) of Li-air batteries with Super P carbon (SP) and Co3O4 NFs/SP cathodes

    图  5  SP (a)和Co3O4 NFs/SP电极(b)的锂-空气电池的充放电曲线及其循环性能(c)

    Figure  5.  Discharge-charge curves of Li-air batteries with SP (a) and Co3O4 NFs/SP (b) cathodes, and their corresponding cycling performances (c)

    图  6  SP (a)和Co3O4 NFs/SP (b)电极的锂-空气电池的放电曲线及其放电容量(c)

    Figure  6.  Discharge curves of Li-air batteries with SP (a) and Co3O4 NFs/SP (b) cathodes, and corresponding discharge capacities (c)

    图  7  SP电极原始(a)和首次放电后(b)的SEM图像及Co3O4 NFs/SP电极的原始(c)和首次放电后(d)的SEM图像

    Figure  7.  SEM images of pristine SP cathode (a) and after first discharge (b), as well as pristine Co3O4 NFs/SP (c) and after first discharge (d)

  • [1] YANG S, HE P, ZHOU H. Research progresses on materials and electrode design towards key challenges of Li-air batteries[J]. Energy Storage Materials,2018,13:29-48. doi: 10.1016/j.ensm.2017.12.020
    [2] WANG H F, WANG X X, LI M L, et al. Porous materials applied in nonaqueous Li-O2 batteries: Status and perspectives[J]. Advanced Materials,2020,32(44):2002559.
    [3] LUNTZ A C, MCCLOSKEY B D. Nonaqueous Li-air batteries: A status report[J]. Chemical Reviews,2014,114(23):11721-11750. doi: 10.1021/cr500054y
    [4] SONG L N, ZHANG W, WANG Y, et al. Tuning lithium-peroxide formation/decomposition routes with single-atom catalysts towards lithium-oxygen batteries[J]. Nature Communations,2020,11:2191. doi: 10.1038/s41467-020-15712-z
    [5] ZHANG Y, ZHANG X M, WANG J W, et al. Potential-dependent generation of O2 and LiO2 and their critical roles in O2 reduction to Li2O2 in aprotic Li-O2 batteries[J]. The Journal of Physical Chemistry C,2016,120(7):3690-3698. doi: 10.1021/acs.jpcc.5b12338
    [6] CHENG F, CHEN J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews,2012,41(6):2172-2192. doi: 10.1039/c1cs15228a
    [7] MCCLOSKEY B D, SPEIDEL A R, SCHEFFLER D C, et al. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries[J]. The Journal of Physical Chemistry Letters,2012,3(8):997-1001. doi: 10.1021/jz300243r
    [8] THOTIYL M M O, FREUNBERGER S A, PENG Z Q, et al. The carbon electrode in non-aqueous Li-O2 cells[J]. Journal of the American Chemical Society,2013,135(1):494-500. doi: 10.1021/ja310258x
    [9] ZHANG Z C, LU J, ASSARY R S, et al. Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes[J]. The Journal of Physical Chemistry C,2011,115(51):25535-25542. doi: 10.1021/jp2087412
    [10] MA L, YU T W, TZOGANAKIS E, et al. Fundamental understanding and material challenges in rechargeable nonaqueous Li-O2 batteries: Recent progress and perspective[J]. Advanced Energy Materials,2018,8(22):1800348. doi: 10.1002/aenm.201800348
    [11] LIU B, ZHANG J G, XU W. Advancing lithium metal batteries[J]. Joule,2018,2(1):1-13. doi: 10.1016/j.joule.2017.10.014
    [12] YANGH J, GUO C, NAVEED A, et al. Recent progress and perspective on lithium metal anode protection[J]. Energy Storage Materials,2018,14:199-221. doi: 10.1016/j.ensm.2018.03.001
    [13] LIU Q C, XU J J, YUAN S, et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries[J]. Advanced Materials,2015,27(35):5241-5247. doi: 10.1002/adma.201501490
    [14] WANG H F, LI J F, SUN X X, et al. Stabilizing electrochemical Li-O2 batteries with a metal-based cathode of PdNi on Ni nonwoven fabric[J]. Nanoscale,2019,11(24):11513-11520. doi: 10.1039/C9NR02390A
    [15] XU J J, CHANG Z W, YIN Y B, et al. Nanoengineered ultralight and robust all-metal cathode for highcapacity, stable lithium-oxygen batteries[J]. ACS Central Science,2017,3(6):598-604. doi: 10.1021/acscentsci.7b00120
    [16] SONG L N, ZOU L C, WANG X X, et al. Realizing formation and decomposition of Li2O2 on its own surface with a highly dispersed catalyst for high round-trip efficiency Li-O2 batteries[J]. iScience,2019,14:36-46. doi: 10.1016/j.isci.2019.03.013
    [17] CHANG Y Q, DONG S M, JU Y H, et al. A carbon- and binder-free nanostructured cathode for high-performance nonaqueous Li-O2 battery[J]. Advanced Science,2015,2(8):1500092. doi: 10.1002/advs.201500092
    [18] ZHANG L X, ZHANG S L, ZHANG K J, et al. Mesoporous NiCo2O4 nanoflakes as electrocatalysts for rechargeable Li-O2 batteries[J]. Chemical Communications,2013,49(34):3540-3542. doi: 10.1039/c3cc40393a
    [19] MA L, MENG N, ZHANG Y, et al. Improved electrocatalytic activity of δ-MnO2@MWCNTs by inducing the oriented growth of oxygen reduction products in Li-O2 batteries[J]. Nano Energy,2019,58:508-516. doi: 10.1016/j.nanoen.2019.01.089
    [20] WANG H L, YANG Y, LIANG Y Y, et al. Rechargeable Li-O2 batteries with a covalently coupled MnCo2O4-graphene hybrid as an oxygen cathode catalyst[J]. Energy & Environmental Science,2012,5(7):7931-7938.
    [21] OH S H, NAZAR L F. Oxide catalysts for rechargeable high-capacity Li-O2 batteries[J]. Advanced Energy Materials,2012,2(7):903-910. doi: 10.1002/aenm.201200018
    [22] XU J J, XU D, WANG Z L, et al. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries[J]. Angewandte Chemie International Edition,2013,52(14):3887-3890. doi: 10.1002/anie.201210057
    [23] LI F J, OHNISHI R, YAMADA Y, et al. Carbon supported TiN nanoparticles: An efficient bifunctional catalyst for non-aqueous Li-O2 batteries[J]. Chemical Communications,2013,49(12):1175-1177. doi: 10.1039/c2cc37042e
    [24] WANG H, YIN F X, LIU N, et al. Engineering Fe-Fe3C@Fe-N-C active sites and hybrid structures from dual metal-organic frameworks for oxygen reduction reaction in H2-O2 fuel cell and Li-O2 battery[J]. Advanced Functional Materials,2019,29(23):1901531.
    [25] ZHU C, WANG Y, SHUAI L, et al. Remarkable improvement of cyclic stability in Li-O2 batteries using ruthenocene as a redox mediator[J]. Chinese Chemical Letters,2020,31(7):1997-2002. doi: 10.1016/j.cclet.2019.11.046
    [26] LIU J, LI D, WANG Y, et al. MoO2 nanoparticles/carbon textiles cathode for high performance flexible Li-O2 battery[J]. Journal of Energy Chemistry,2020,47:66-71. doi: 10.1016/j.jechem.2019.12.001
    [27] ZHANG J, LYU Z, ZHANG F, et al. Facile synthesis of hierarchical porous Co3O4 nanoboxes as the efficient cathode catalysts for Li-O2 batteries[J]. Journal of Materials Chemistry A,2016,4(17):6350-6356. doi: 10.1039/C6TA01995A
    [28] ZHANG P, ZHANG S F, HE M, et al. Realizing the embedded growth of large Li2O2 aggregations by matching different metal oxides for high-capacity and high-rate lithium oxygen batteries[J]. Advanced Science,2017,4(11):1700172. doi: 10.1002/advs.201700172
    [29] LI X, WEN C, LI H, et al. In situ decoration of nanosized metal oxide on highly conductive MXene nanosheets as efficient catalyst for Li-O2 battery[J]. Journal of Energy Chemistry,2020,47:272-280. doi: 10.1016/j.jechem.2020.02.016
    [30] XU J J, WANG Z L, XU D, et al. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries[J]. Nature Communications,2013,4:2438. doi: 10.1038/ncomms3438
    [31] LIU Q C, XU J J, CHANG Z W, et al. Direct electrodeposition of cobalt oxide nanosheets on carbon paper as free-standing cathode for Li-O2 battery[J]. Journal of Materials Chemistry A,2014,2(17):6081-6085. doi: 10.1039/C3TA14011C
    [32] SHAO Y, DING F, XIAO J, et al. Making Li-air batteries rechargeable: Material challenges[J]. Advanced Functional Materials,2012,23(8):987-1004.
    [33] WANG Z L, XU D, XU J J, et al. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries[J]. Advanced Functional Materials,2012,22(17):3699-3705. doi: 10.1002/adfm.201200403
    [34] ADAMS B D, RADTKE C, BLACK R, et al. Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge[J]. Energy & Environmental Science,2013,6(6):1772-1778.
    [35] MITCHELL R R, GALLANT B M, SHAO-HORN Y, et al. Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth[J]. The Journal of Physical Chemistry Letters,2013,4(7):1060-1064. doi: 10.1021/jz4003586
    [36] CHANG Z W, XU J J, LIU Q C, et al. Recent progress on stability enhancement for cathode in rechargeable non-aqueous lithium-oxygen battery[J]. Advanced Energy Materials,2015,5(21):1500633. doi: 10.1002/aenm.201500633
    [37] HUANG X, YU H, TAN H, et al. Carbon nanotube-encapsulated noble metal nanoparticle hybrid as a cathode material for Li-oxygen batteries[J]. Advanced Functional Materials,2014,24(41):6516-6523. doi: 10.1002/adfm.201400921
  • 加载中
图(7)
计量
  • 文章访问数:  694
  • HTML全文浏览量:  267
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-03
  • 录用日期:  2020-10-26
  • 网络出版日期:  2020-10-30
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回