留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性SiO2凝胶涂层滤料制备与性能

李晴 钱付平 薛沚怡 董伟 韩云龙 鲁进利

李晴, 钱付平, 薛沚怡, 等. 改性SiO2凝胶涂层滤料制备与性能[J]. 复合材料学报, 2021, 38(8): 2489-2496. doi: 10.13801/j.cnki.fhclxb.20201030.005
引用本文: 李晴, 钱付平, 薛沚怡, 等. 改性SiO2凝胶涂层滤料制备与性能[J]. 复合材料学报, 2021, 38(8): 2489-2496. doi: 10.13801/j.cnki.fhclxb.20201030.005
LI Qing, QIAN Fuping, XUE Zhiyi, et al. Preparation and performance of modified SiO2 gel coating filter material[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2489-2496. doi: 10.13801/j.cnki.fhclxb.20201030.005
Citation: LI Qing, QIAN Fuping, XUE Zhiyi, et al. Preparation and performance of modified SiO2 gel coating filter material[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2489-2496. doi: 10.13801/j.cnki.fhclxb.20201030.005

改性SiO2凝胶涂层滤料制备与性能

doi: 10.13801/j.cnki.fhclxb.20201030.005
基金项目: 安徽省科技重大专项 (18030801109)
详细信息
    通讯作者:

    钱付平,博士,教授,博士生导师,研究方向为冶金烟气污染控制与超低排放 E-mail:fpingqian@163.com

  • 中图分类号: TB322

Preparation and performance of modified SiO2 gel coating filter material

  • 摘要: 从滤料表面改性的角度对提高滤料在高湿环境中运行的稳定性进行研究。以聚对苯二甲酸乙二醇酯(PET)滤料为基材、正硅酸乙酯(TEOS)为前驱体、甲基三乙氧基硅烷(MTES)为低表面能物质,采用溶胶-凝胶法,在滤料表面原位生成SiO2纳米粒子,制备改性SiO2凝胶涂层滤料。采用FESEM- EDS、FTIR和接触角测量仪分析了PET滤料表面化学成分、润湿性能及表面形貌的变化。结果表明:整理后PET滤料表面生成SiO2纳米粒子,经MTES改性处理后滤料表面布满疏水的甲基基团,滤料疏水性能显著提高,其表面水接触角达154.11°。SiO2颗粒在滤料表面均匀分布,凝胶聚合物仅在纤维交叉处沉积,使滤料透气性得以保证,过滤效率由97.0595%增加到99.2028%,过滤品质因数由0.02124增加到0.02761,提升了30%。

     

  • 图  1  TEOS在碱性环境下水解缩合反应机制

    Figure  1.  Schematic diagram of TEOS hydrolysis condensation reaction in alkaline environment

    图  2  固定MTES浓度下MTES/TEOS变化时滤料表面的静态接触角

    Figure  2.  Contact angle on the filter surface when MTES/TEOS changes under fixed MTES concentration

    图  3  滤料的原始质量与改性处理后的质量

    Figure  3.  Raw and after modification mass of the filter material

    图  4  不同改性剂添加量(R0~R9)时纤维滤料的SEM图像

    Figure  4.  SEM images of fiber filter with different modifier addition amounts (R0~R9)

    图  5  改性前后滤料的FTIR图谱

    Figure  5.  FTIR spectra of filter material before and after modification

    图  6  改性后滤料表面的EDS图像

    Figure  6.  EDS images of modified filter material surface

    图  7  滤料静态接触角随磨损循环的变化

    Figure  7.  Contact angle of filter changes with abrasion cycles

    图  8  滤料静态接触角随不同pH值的变化

    Figure  8.  Contact angle of filter changes with different pH values

    表  1  不同改性SiO2凝胶的正硅酸乙酯(TEOS)、甲基三乙氧基硅烷(MTES)配比

    Table  1.   Ratio of ethyl orthosilicate (TEOS) and methyltriethoxysilane (MTES) of different modified SiO2 gels

    Test numberR0R1R2R3R4R5R6R7R8R9
    TEOS/mol 0 0.022 0.064 0.072 0.022 0.064 0.072 0.022 0.064 0.072
    MTES/mol 0 0.042 0.064 0.058 0.064 0.058 0.042 0.058 0.042 0.064
    下载: 导出CSV

    表  2  改性后滤料表面主要元素含量

    Table  2.   Content of main elements on the surface of modified filter material

    ElementCOSi
    Content/wt% 82.05 16.71 1.24
    下载: 导出CSV

    表  3  改性前后滤料过滤性能变化

    Table  3.   Change of filter performance before and after modification

    Untreated PET filter materialR2
    Filtration efficiency/% 97.0595 99.2028
    Filter resistance/Pa 166 175
    Quality factor 0.02124 0.02761
    下载: 导出CSV
  • [1] CAO B W, WANG S L, DONG W, et al. Investigation of the filtration performance for fibrous media: Coupling of a semi-analytical model with CFD on Voronoi-based microstructure[J]. Separation and Purification Technology, 2020, 251: 117364.
    [2] LI J L, ZHOU F B, LI S H. Experimental study on the dust filtration performance with participation of water mist[J]. Process Safety and Environmental Protection,2017,109:357-364. doi: 10.1016/j.psep.2017.04.006
    [3] ANDERSEN B O, NIELSEN N F, WALTHER J H. Numerical and experimental study of pulse jet cleaning in fabric filters[J]. Powder Technology,2016,291:284-298. doi: 10.1016/j.powtec.2015.12.028
    [4] FINDANIS N, SOUTHAM M. Control and management of particulate emissions using improved reverse pulse-jet cleaning systems[J]. Procedia Engineering,2012,49:228-238. doi: 10.1016/j.proeng.2012.10.132
    [5] 陈路敏, 钱付平, 叶蒙蒙, 等. 脉冲喷吹清灰高湿粉尘剥落的数学模型研究[J]. 煤炭学报, 2019, 44(S2):683-690.

    CHEN L M, QIAN F P, YE M M, et al. Research on mathematical model of high humidity dust spalling by pulse jet cleaning[J]. Journal of China Coal Society,2019,44(S2):683-690(in Chinese).
    [6] SRIRAMULU D, REED E L, ANNAMALAI M, et al. Synthesis and characterization of superhydrophobic, self-cleaning NIR-reflective silica nanoparticles[J]. Scientific Reports,2016,6(1):35593.
    [7] CAO C Y, GE M Z, HUANG J Y, et al. Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separation[J]. Journal of Materials Chemistry,2016,4(31):12179-12187. doi: 10.1039/C6TA04420D
    [8] LU Y, SATHASIVAM S, SONG J, et al. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science,2015,347(6226):1123-1135.
    [9] SAM E K, SAM D K, LV X, et al. Recent development in the fabrication of self-healing superhydrophobic surfaces[J]. Chemical Engineering Journal,2019,373:531-546. doi: 10.1016/j.cej.2019.05.077
    [10] LU S, ZHAO Y, HU X, et al. Biomimetic fabrication of micron/nano-meter assembled superhydrophobic polymer fiber fabrics for oil/water separation[J]. Materials Letters,2019,262:127152.
    [11] HAO L F, GAO T T, XU W, et al. Preparation of crosslinked polysiloxane/SiO2 nanocomposite via in-situ condensation and its surface modification on cotton fabrics[J]. Applied Surface Science,2016,371:281-288. doi: 10.1016/j.apsusc.2016.02.204
    [12] KUMAR D, WU X, FU Q T, et al. Development of durable self-cleaning coatings using organic inorganic hybrid sol-gel method[J]. Applied Surface Science,2015,344:205-212. doi: 10.1016/j.apsusc.2015.03.105
    [13] KONG X, ZHU C, LV J, et al. Robust fluorine free superhydrophobic coating on polyester fabrics by spraying commercial adhesive and hydrophobic fumed SiO2 nanoparticles[J]. Progress in Organic Coatings,2020,138:105342. doi: 10.1016/j.porgcoat.2019.105342
    [14] WU X H, FU Q T, KUMAR D, et al. Mechanically robust superhydrophobic and superhydrophobic coatings derived by sol-gel method[J]. Materials and Design,2016,89:1302-1309. doi: 10.1016/j.matdes.2015.10.053
    [15] 张旋宇, 徐丽慧, 沈勇, 等. 疏水SiO2气凝胶的常压制备及其在棉织物上的应用研究[J]. 功能材料, 2018, 49(3):3118-3123.

    ZHANG X Y, XU L H, SHEN Y, et al. Preparation of hydrophobic SiO2 aerogel at atmospheric pressure and its application on cotton fabrics[J]. Functional Materials,2018,49(3):3118-3123(in Chinese).
    [16] LATTHE S S, SUTAR R S, KODAG V S, et al. Self-cleaning superhydrophobic coatings: Potential industrial applications[J]. Progress in Organic Coatings,2019,128:52-58. doi: 10.1016/j.porgcoat.2018.12.008
    [17] YANG J, PU Y, HE H, et al. Superhydrophobic cotton nonwoven fabrics through atmospheric plasma treatment for applications in self-cleaning and oil-water separation[J]. Cellulose,2019,26(12):7507-7522.
    [18] 郭颖赫, 赫伟东, 柳静献. 聚对苯二甲酸乙二醇酯纳米纤维膜/涤纶针刺毡过滤复合材料的制备及性能[J]. 复合材料学报, 2019, 36(3):572-577.

    GUO Y H, HE W D, LIU J X. preparation and properties of polyethylene terephthalate nanofiber membrane/polyester needled felt filter composites[J]. Acta Materiae Compositae Sinica,2019,36(3):572-577(in Chinese).
    [19] 徐林, 任煜, 张红阳, 等. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12):86-92.

    XU L, REN Y, ZHANG H Y, et al. Construction and performance of TiO2/fluorosilane superhydrophobic layer on polyester fabric surface[J]. Journal of Textile Research,2019,40(12):86-92(in Chinese).
    [20] SUN H X, XU Y Y, ZHOU Y Y, et al. Preparation of superhydrophobic nanocomposite fiber membranes by electrospinning poly (vinylidene fluoride)/silane coupling agent modified SiO2 nanoparticles[J]. Journal of Applied Polymer Science,2017,134(13):44501.
    [21] 欧阳舴艋, 李双双, 石琢, 等. 改性纳米SiO2/硅橡胶复合材料的制备及性能[J]. 复合材料学报, 2019, 36(7):1700-1707.

    OUYANG Z M, LI S S, SHI Z, et al. Preparation and properties of modified nano-SiO2/silicone rubber composite[J]. Acta Materiae Compositae Sinica,2019,36(7):1700-1707(in Chinese).
    [22] RAO A V, GURAV A B, LATTHE S S, et al. Water repellent porous silica films by sol-gel dip coating method[J]. Journal of Colloid and Interface Science,2010,352(1):30-35. doi: 10.1016/j.jcis.2010.08.003
    [23] HA T, CHOI S G, JUNG S, et al. The improvement of mechanical and dielectric properties of ordered mesoporous silica film using TEOS-MTES mixed silica precursor[J]. Ceramics International,2008,34(4):947-951. doi: 10.1016/j.ceramint.2007.09.070
    [24] 罗文. 超浸润空气过滤织物的制备及其性能研究[D]. 南京: 东南大学, 2018.

    LUO W. Preparation and performance study of super-soaked air filter fabric[D]. Nanjing: Southeast University, 2018(in Chinese).
    [25] 董伟, 钱付平, 李晴, 等. 聚对苯二甲酸乙二醇酯滤料超疏水表面的制备及性能[J]. 复合材料学报, 2020, 37(12): 3017-3025.

    DONG W, QIAN F P, LI Q, et al. Preparation and properties of polyethylene terephthalate filter material superhydrophobic surface [J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3017-3025(in Chinese).
    [26] 齐春红. 基于低表面能二氧化硅超疏水表面的制备及其防结冰性能研究[D]. 太原: 中北大学, 2020.

    QI C H. Study on the preparation and anti-icing performance of low surface energy silica superhydrophobic surface[D]. Taiyuan: North China University, 2020(in Chinese).
    [27] 李晓霞. 超疏水二氧化硅溶胶的制备及性能应用研究[D]. 济南: 山东大学, 2020.

    LI X X. Preparation and Application of superhydrophobic silica sol[D]. Ji'nan: Shandong University, 2020(in Chinese).
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1068
  • HTML全文浏览量:  462
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 录用日期:  2020-10-16
  • 网络出版日期:  2020-10-30
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回