留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高储能陶瓷/聚偏氟乙烯复合电介质的研究进展

张慧 衡婷婷 房正刚 胡欣 方亮 陆春华

张慧, 衡婷婷, 房正刚, 等. 高储能陶瓷/聚偏氟乙烯复合电介质的研究进展[J]. 复合材料学报, 2021, 38(7): 2107-2122. doi: 10.13801/j.cnki.fhclxb.20201030.002
引用本文: 张慧, 衡婷婷, 房正刚, 等. 高储能陶瓷/聚偏氟乙烯复合电介质的研究进展[J]. 复合材料学报, 2021, 38(7): 2107-2122. doi: 10.13801/j.cnki.fhclxb.20201030.002
ZHANG Hui, HENG Tingting, FANG Zhenggang, et al. Research progress of high-energy-density ceramic/poly(vinylidene fluoride) composite dielectrics[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2107-2122. doi: 10.13801/j.cnki.fhclxb.20201030.002
Citation: ZHANG Hui, HENG Tingting, FANG Zhenggang, et al. Research progress of high-energy-density ceramic/poly(vinylidene fluoride) composite dielectrics[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2107-2122. doi: 10.13801/j.cnki.fhclxb.20201030.002

高储能陶瓷/聚偏氟乙烯复合电介质的研究进展

doi: 10.13801/j.cnki.fhclxb.20201030.002
基金项目: 国家自然科学基金(21604037);江苏省高等学校优势学科建设工程项目;江苏省六大人才高峰项目(XCL-029)
详细信息
    通讯作者:

    胡欣,博士,副教授,硕士生导师,研究方向为聚合物基介电储能材料 E-mail:xinhu@njtech.edu.cn

    陆春华,博士,教授,博士生导师,研究方向为光谱的选择性吸收及能量转换利用 E-mail:chhlu@njtech.edu.cn

  • 中图分类号: TB332

Research progress of high-energy-density ceramic/poly(vinylidene fluoride) composite dielectrics

  • 摘要: 介电电容器作为间歇产生的可持续能源的高效存储转换设备,在新能源领域发挥着不可替代的作用。而电介质电容器的核心是具有高储能密度的电介质材料。聚合物电介质材料由于具有击穿场强高、放电速度快、能长时间使用并可自修复等特点,成为高性能电容器的潜力候选材料,但聚合物本身较低的介电常数限制了其储能密度。通过将具有高介电常数的陶瓷填料与聚偏氟乙烯(PVDF)聚合物复合,制备新型陶瓷/PVDF复合电介质,在提高电介质材料的介电性能和储能密度方面取得了重要进展。本文介绍了电介质材料的基本原理,综述了不同类型的陶瓷/PVDF复合电介质的结构、储能机制及介电储能性能,并对其未来发展趋势进行了展望。

     

  • 图  1  电介质在外加电场下极化示意图

    Figure  1.  Polarization of dielectrics under electric field

    图  2  电介质材料的单向电位移D-电场强度E电滞回线示意图

    Figure  2.  Schematic of unipolar electric displacement D-electric field strength E curve for dielectric materials

    图  3  钛酸钡(BT)@Al2O3/聚偏氟乙烯(PVDF)复合材料的储能性能及电场分布和电通量密度[20]

    Figure  3.  Schematic diagram of energy storage performance, electric field distribution and electric flux density of barium titanate (BT)@ Al2O3/poly(vinylidene fluoride) (PVDF) composites[20]

    图  4  制备BT@聚合物/PVDF复合薄膜示意图[27]

    Figure  4.  Schematic illustration for preparation of BT@polymer/PVDF composite films[27]

    图  5  通过常规固态方法合成Na0.5Bi0.5TiO3 (NBT)粉末的示意图(a); NBT@多巴胺(DA)/PVDF复合膜的制造工艺(b);NBT@DA/PVDF复合膜的改进机制(c)[40]

    Figure  5.  Schematic illustrations for a synthesis of Na0.5Bi0.5TiO3 (NBT) powders via conventional solid-state method (a); Fabrication processes of NBT@dopamine (DA)/PVDF composite films (b); Modified mechanism of NBT@DA/PVDF composite films (c)[40]

    图  6  BT/PVDF复合材料三明治结构示意图[44]

    Figure  6.  Schematic diagram of BT/PVDF composite sandwich structure[44]

    图  7  PDA改性BaSrTiO3前后复合材料减少泄漏电流和抑制界面极化的机制及性能示意图[48]

    Figure  7.  Schematic diagram of mechanism and performance of composite materials before and after PDA modified BaSrTiO3 to reduce leakage current and inhibit interfacial polarization[48]

    图  8  能量密度与分层界面关系示意图: (a) BT@甲基丙烯酰基丙基三甲氧基硅烷(MPS)/聚(偏氟乙烯-三氟氯乙烯) (P(VDF-CTFE))复合材料; (b) 具有分层界面和晶体的纳米复合网络[54]

    Figure  8.  Schematic illustration of relationship between energy density and hierarchical interface: (a) BT@γ-methacryloylpropyl trimethoxysilane (MPS)/poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDF-CTFE)) composite; (b) Nanoomposite networks with hierarchical interfaces and their crystals[54]

    图  9  制备Fe3O4@BT/P(VDF-HFP)复合膜示意图[60]

    Figure  9.  Schematic diagram for preparation of Fe3O4@BT/P(VDF-HFP) composite film[60]

    图  10  BT-氟聚合物纳米粒子和P(VDF-HFP)复合薄膜的制备示意图[63]

    Figure  10.  Schematic illustration for preparation of BT- fluoro-polymer nanoparticles and P(VDF-HFP) composite film[63]

    图  11  BT/P(VDF-HFP)-g-甲基丙烯酸缩水甘油酯(GMA)复合材料制备过程示意图[69]

    Figure  11.  Schematic illustration of preparation process for BT/P(VDF-HFP)-g-glycidyl methacrylate (GMA) composites[69]

    图  12  BT@液晶含氟聚合物纳米粒子示意图[72]

    Figure  12.  Schematic illustration of BT@liquid-crystalline fluoropolymer nanoparticles[72]

    表  1  以PVDF、P(VDF-CTFE)、P(VDF-HFP)二元共聚物及聚(偏氟乙烯-三氟乙烯-氯氟乙烯) (P(VDF-TrFE-CFE))和聚(偏氟乙烯-三氟乙烯-三氟氯乙烯) (P(VDF-TrFE-CTFE))三元共聚物为基体的复合电介质

    Table  1.   Composite dielectrics based on PVDF, P(VDF-CTFE), P(VDF-HFP) binary copolymer, poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) and poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) (P(VDF-TrFE-CTFE)) terpolymer

    Substrate
    material
    FillerPacking
    structure
    Composite
    structure
    Dielectric energy storage performanceRef.
    ${\varepsilon _{\rm{r}}}$$\tan \delta $${E_{\rm{b} } }$/(MV·m−1)${U_{\rm{e} } }$/(J·cm−3)
    PVDF BaTiO3@Al2O3 (BT@AO) Core-shell BT@AO/PVDF 16.34 (103 Hz) 420 10.58 [20]
    PVDF BaTiO3@TiO2 (BT@TO) Core-shell BT@TO/PVDF >41 650 20 [22]
    PVDF BT@PMMA, BT@PTFEMA Core-shell BT@PMMA/PVDF, BT@PTFEMA/
    PVDF
    0.025 (105 Hz) [27]
    PVDF CaCu3Ti4O12@Al2O3 (CCTO@AO) Core-shell CCTO@AO/PVDF 18.4 (102 Hz) <0.13 340 8.46 [30]
    PVDF Pb(Zr1-xTix)O3 (PZT) Submicron particle PZT/PVDF 40.8 (103 Hz) 0.037 (102 Hz) 250 6.41 [33]
    PVDF PZT Nanowires PZT NWs/PVDF 0.031 (103 Hz) 15 0.0166 [34]
    PVDF PZT Aligned nanowires 3-Direction alignmentPZT NWs/PVDF 15 0.0303 [35]
    PVDF BT-BN Nanowires BT-BN/PVDF 434 15.25 [36]
    PVDF Surface modified SrTiO3 nanoparticles (ST NP) by polyvinyl-lpyrrolidone (PVP) Nanoparticles ST NP/PVDF 33.9 (103 Hz) 0.047 (103 Hz) 270 5.1 [39]
    PVDF Surface modified Na0.5Bi0.5TiO3 (NBT) by dopamine (DA) Perovskite
    structure
    NBT/PVDF 380 9.16 [40]
    PVDF Surface modifiedgallium ferrite (GFO) by sodium dodecyl-sulphate (SDS) Nanoparticles GFO/PVDF 25 (104 Hz) 0.02 (104 Hz) 6 0.00388 [41]
    PVDF BT Nanoparticles Sandwich-structured BT/PVDF <0.05 470 18.8 [44]
    PVDF BNNSs 2D nanosheets PVDF-BNNSs-PVDF 612 14.3 [46]
    PVDF BNNSs Ba0.5Sr0.5TiO3 (BST) 2D nanosheets;
    1D nanowires
    BNNSs-PVDF/BST-PVDF/BNNSs-PVDF 14.2 (103 Hz) <0.05 588 20.5 [47]
    P(VDF-CTFE) Surface modified
    BST by PDA
    Nanoparticles BST/P(VDF-CTFE) 35 (102 Hz) 0.06 (102 Hz) 466 11 [48]
    P(VDF-CTFE) Surface modified
    BT by PDA
    1D nanowires BT/P(VDF-CTFE) 270 8.4 [49]
    P(VDF-CTFE) Surface modified
    BT by PDA
    Nanoparticles BT/P(VDF-CTFE) 250 2.9 [50]
    P(VDF-CTFE) BNNSs surface modified
    BT by PDA
    2D Nanosheets; Nanoparticles BNNSs/mBT/
    P(VDF-CTFE)
    400 5.2 [51]
    P(VDF-CTFE) Surface modified
    BST by KH550
    Nanoparticles BST/P(VDF-CTFE) >33 250 6.8 [52]
    P(VDF-CTFE) Surface modified
    BT by MPS
    Nanoparticles BT/P(VDF-CTFE) 129 (103 Hz) 160 2.9 [54]
    P(VDF-HFP) Surface modified
    BCZT by NPh
    Nanoparticles BCZT/P(VDF-HFP) 15.2 (104 Hz) 0.043 (104 Hz) 355 8.5 [55]
    P(VDF-HFP) Surface charged
    Al2O3 (GP-AO)
    Nanoparticles GP-AO/
    P(VDF-HFP)
    100.5 (1 Hz) 900 4.06 [56]
    P(VDF-HFP) AO 1D nanowires AO/P(VDF-HFP) [57]
    P(VDF-HFP) NaNbO3-Al2O3
    (NN-AO)
    Core-shell; 2D nanosheets NN-AO Ps/
    P(VDF-HFP)
    440 14.59 [58]
    P(VDF-HFP) BST Nanofiber
    network
    BST/P(VDF-HFP) 300 9.46 [59]
    P(VDF-HFP) Fe3O4@BaTiO3 (FO@BT) Core-shell FO@BT/P(VDF-HFP) <0.05 235 7.018 [60]
    P(VDF-HFP) Fluoro-polymer@
    BaTiO3
    Core-shell Fluoro-polymer@
    BT/P(VDF-HFP)
    20 6.23 [63]
    P(VDF-HFP) BT Nanoparticles BT/P(VDF-HFP)-
    g-GMA
    34.8 (106 Hz) 0.128 (106 Hz) 20 0.33 [69]
    P(VDF-TrFE-CTFE) KTa0.2Nb0.8O3-BaTiO3 (KTN-BT) Hybrid nanoparticles KTN-BT/P(VDF-TrFE-CTFE) 322 (102 Hz) 300 7.1 [70]
    P(VDF-TrFE-CTFE) Liquid-crystalline-fluoropolymer@BT Core-shell Liquid-crystalline-fluoropolymer@BT/
    P(VDF-TrFE-CTFE)
    88.5 (103 Hz) 0.33 (106 Hz) 542 45.5 [72]
    P(VDF-TrFE-CFE) BNNS-BST 2D nanosheets;
    1D nanowires
    BST/BNNS/P(VDF-TrFE-CFE) 625 24.4 [73]
    Notes:${\varepsilon _{\rm{r}}}$—Dielectric constant; $\tan \delta $ —Dielectric loss; ${E_{\rm{b}}}$—Breakdown strength; ${U_{\rm{e}}}$—Energy density.
    下载: 导出CSV
  • [1] WU C C, YANG C F. High-permittivity composites thin films for high-energy storage capacitor application using the nonvacuum method[J]. Advances in Polymer Technology,2015,36(3):378-384.
    [2] HU X P, YI K W, LIU J, et al. High energy density dielectrics based on PVDF-based polymers[J]. Energy Technology,2018,6(5):849-864. doi: 10.1002/ente.201700901
    [3] ZHONG S L, DANG Z M, ZHOU W Y, et al. Past and future on nanodielectrics[J]. IET Nanodielectrics,2018,1(1):41-47. doi: 10.1049/iet-nde.2018.0004
    [4] DANG Z M, YUAN J K, YAO S H, et al. Flexible nanodielectric materials with high permittivity for power energy storage[J]. Advanced Materials,2013,25(44):6334-6365.
    [5] LIU S H, XUE S X, ZHANG W Q, et al. Significantly enhanced dielectric property in PVDF nanocomposites flexible films through a small loading of surface-hydroxylated Ba0.6Sr0.4TiO3 nanotubes[J]. Journal of Materials Chemistry A,2014,2(42):18040-18046. doi: 10.1039/C4TA04051A
    [6] XIE B, ZHANG H B, ZHANG Q, et al. Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires[J]. Journal of Materials Chemistry A,2017,5(13):6067-6078.
    [7] HAN X H, CHEN S, LV X G, et al. Using novel rigid-fluoride polymer to control the interfacial thickness of graphene and tailor the dielectric behavior of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) nanocomposites[J]. Physical Chemistry Chemical Physics,2018,20(4):2826-2837. doi: 10.1039/C7CP07224D
    [8] ANSHIDA M, KALA M S, JAYALAKSHMY M S, et al. Dopamine functionalization of BaTiO3: An effective strategy for the enhancement of electrical, magnetoelectric and thermal properties of BaTiO3/PVDF-TrFE nanocomposite[J]. Dalton Transactions,2018,47(6):2039-2051. doi: 10.1039/C7DT03389C
    [9] LV X G, LUO H, CHEN S, et al. BaTiO3 platelets and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) hybrid composites for energy storage application[J]. Mechanical Systems and Signal Processing,2018,108:48-57. doi: 10.1016/j.ymssp.2018.02.011
    [10] CHENG Z X, ZHOU W F, ZHANG C, et al. Composite of P(VDF-CTFE) and aromatic polythiourea for capacitors with high-capacity, high-efficiency, and fast response[J]. Journal of Polymer Science Part B: Polymer Physics,2018,56(2):193-199. doi: 10.1002/polb.24537
    [11] CHEN Y X, TANG X, SHU J, et al. Crosslinked P(VDF-CTFE)/PS-COOH nanocomposites for high-energy-density capacitor application[J]. Journal of Polymer Science Part B: Polymer Physics,2016,54(12):1160-1169. doi: 10.1002/polb.24023
    [12] CHEN Y X, YAO L Y, YANG C B, et al. In-depth understanding of interfacial crystallization via flash DSC and enhanced energy storage density in ferroelectric P(VDF-CTFE)/Au NRs nanocomposites for capacitor application[J]. Soft Matter,2018,14(37):7714-7723. doi: 10.1039/C8SM01496E
    [13] MARTINS P, NUNES J S, HUNGERFORD G, et al. Local variation of the dielectric properties of poly(vinylidene fluoride) during the α to β phase transformation[J]. Physics Letters A,2009,373(2):177-180. doi: 10.1016/j.physleta.2008.11.026
    [14] GAO L, HE J L, HU J, et al. Large enhancement in polarization response and energy storage properties of poly(vinylidene fluoride) by improving the interface effect in nanocomposites[J]. Journal of Physical Chemistry C,2014,118(2):831-838. doi: 10.1021/jp409474k
    [15] THAKUR V K, LIN M F, TAN E J, et al. Green aqueous modification of fluoropolymers for energy storage applications[J]. Journal of Materials Chemistry,2012,22(13):5951-5959. doi: 10.1039/c2jm15665b
    [16] YAO L M, PAN Z B, LIU S H, et al. Significantly enhanced energy density in nanocomposite capacitors combining the TiO2 nanorod array with poly(vinylidene fluoride)[J]. ACS Applied Materials & Interfaces,2016,8(39):26343-26351.
    [17] ZHANG G Q, BRANNUM D, DONG D X, et al. Interfacial polarization-induced loss mechanisms in polypropylene/BaTiO3 nanocomposite dielectrics[J]. Chemistry of Materials,2016,28(13):4646-4660. doi: 10.1021/acs.chemmater.6b01383
    [18] BERBER P, BALASUBRAMANIAN S, ANGUCHAMY Y, et al. Polymer composite and nanocomposite dielectric materials for pulse power energy storage[J]. Materials,2009,2(4):1697-1733. doi: 10.3390/ma2041697
    [19] ZHANG Z C, GU Y Z, BI J Y, et al. Tunable BT@SiO2 core-shell filler reinforced polymer composite with high breakdown strength and release energy density[J]. Composites Part A: Applied Science and Manufacturing,2016,85:172-180. doi: 10.1016/j.compositesa.2016.03.025
    [20] PAN Z B, YAO L M, ZHAI J W, et al. High-energy-density polymer nanocomposites composed of newly-structured one-dimensional BaTiO3@Al2O3 nanofibers[J]. ACS Applied Materials & Interfaces,2017,9(4):4024-4033.
    [21] FREDIN L A, LI Z, RATNER M A, et al. Enhanced energy storage and suppressed dielectric loss in oxide core-shell-polyolefin nanocomposites by moderating internal surface area and increasing shell thickness[J]. Advanced Materials,2012,24(44):5946-5953. doi: 10.1002/adma.201202183
    [22] ZHANG X, SHEN Y, ZHANG Q H, et al. Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering[J]. Advanced Materials,2015,27(5):819-824. doi: 10.1002/adma.201404101
    [23] BOUHARRAS F E, RAIHANE M, AMEDURI B. Recent progress on core-shell structured BaTiO3@polymer/fluorinated polymers nanocomposites for high energy storage: Synthesis, dielectric properties and applications[J]. Progress in Materials Science,2020,113:100670. doi: 10.1016/j.pmatsci.2020.100670
    [24] DU X Y, LIU Y B, WANG J N, et al. Improved triboelectric nanogenerator output performance through polymer nanocomposites filled with core-shell structured particles[J]. ACS Applied Materials & Interfaces,2018,10(30):25683-25688.
    [25] ZHU M, HUANG X Y, YANG K, et al. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: Understanding the role of polymer shells in the interfacial regions[J]. ACS Applied Materials & Interfaces,2014,6(22):19644-19654.
    [26] MA J C, AZHAR U, ZONG C Y, et al. Core-shell structured PVDF@BT nanoparticles for dielectric materials: A novel composite to prove the dependence of dielectric properties on ferroelectric shell[J]. Materials and Design,2019,164:107556. doi: 10.1016/j.matdes.2018.107556
    [27] ZHANG X H, ZHAO S D, WANG F, et al. Improving dielectric properties of BaTiO3/poly(vinylidene fluoride) composites by employing core-shell structured BaTiO3@poly(methylmethacrylate) and BaTiO3@poly(trifluoroethylmethacrylate) nanoparticles[J]. Applied Surface Science,2017,403:71-79. doi: 10.1016/j.apsusc.2017.01.121
    [28] NI L, CHEN X M. Dielectric relaxations and formation mechanism of giant dielectric constant step in CaCu3Ti4O12 ceramics[J]. Applied Physics Letters,2007,91(12):122905. doi: 10.1063/1.2785128
    [29] ZHANG J L, ZHENG P, WANG C L, et al. Dielectric dispersion of CaCu3Ti4O12 ceramics at high temperatures[J]. Applied Physics Letters,2005,87(14):142901. doi: 10.1063/1.2077864
    [30] CHI Q G, WANG X B, ZHANG C H, et al. High energy storage density for poly(vinylidene fluoride) composites by introduced core-shell CaCu3Ti4O12@Al2O3 nanofibers[J]. ACS Sustainable Chemistry & Engineering,2018,6(7):8641-8649.
    [31] PARK G, KIM M H, INMAN D J. Integration of smart materials into dynamics and control of inflatable space structures[J]. Journal of Intelligent Materials Systems and Structures,2001,12(6):423-433. doi: 10.1106/104538902022725
    [32] SODANO H A, PARK G, INMAN D J. Multiple sensors and actuators for vibration suppression of an inflated torus[J]. Journal of Spacecraft and Rockets,2005,42(2):370-378. doi: 10.2514/1.8022
    [33] CHEN G L, LIN X J, LI J N, et al. Enhanced dielectric properties and discharged energy density of composite films using submicron PZT particles[J]. Ceramics International,2018,44(13):15331-15337. doi: 10.1016/j.ceramint.2018.05.181
    [34] TANG H X, LIN Y R, ANDREWS C, et al. Nanocomposites with increased energy density through high aspect ratio PZT nanowires[J]. Nanotechnology,2011,22(1):015702. doi: 10.1088/0957-4484/22/1/015702
    [35] TANG H X, LIN Y R, SODANO H A. Improved energy density of nanocomposites with aligned PZT nanowires[C]//Behavior and Mechanics of Multifunctional Materials and Composites 2011. Bellingham: SPIE, 2011, 7978: 79780S.
    [36] FAN L, YANG D S, HUANG L, et al. Polymer nanocomposite with enhanced energy storage capacity by introducing hierarchically-designed 1-dimension hybrid nanofiller[J]. Polymer,2020,201:122608. doi: 10.1016/j.polymer.2020.122608
    [37] TANG H X, SODANO H A. High energy density nanocomposite capacitors using non-ferroelectric nanowires[J]. Applied Physics Letters,2013,102(6):063901. doi: 10.1063/1.4792513
    [38] TANG H X, SODANO H A. Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires[J]. Nano Letters,2013,13(4):1373-1379. doi: 10.1021/nl3037273
    [39] WANG J, LIU S H, WANG J Y, et al. Improving dielectric properties and energy storage performance of poly(vinylidene fluoride) nanocomposite by surface-modified SrTiO3 nanoparticles[J]. Journal of Alloys and Compounds,2017,726(5):587-592.
    [40] WANG Z, NIAN W W, WANG T, et al. High energy density induced by DA@NBT powders in PVDF flexible and transparent composite films[J]. Journal of Materials Science: Materials in Electronics,2018,29(6):9129-9136.
    [41] ADAK B, CHINYA I, SEN S. Enhanced dielectric and energy storage performance of surface treated gallium ferrite/polyvinylidene fluoride nanocomposites[J]. RSC Advances,2016,6(107):105137. doi: 10.1039/C6RA22939E
    [42] HU P H, WANG J J, SHEN Y, et al. Highly enhanced energy density induced by hetero-interface in sandwich-structured polymer nanocomposites[J]. Journal of Materials Chemistry A,2013,1(39):12321-12326. doi: 10.1039/c3ta11886j
    [43] HU P H, SHEN Y, GUAN Y H, et al. Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density[J]. Advanced Functional Materials,2014,24(21):3172-3178. doi: 10.1002/adfm.201303684
    [44] WANG Y F, CUI J, YUAN Q B, et al. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites[J]. Advanced Materials,2015,27(42):6658-6663. doi: 10.1002/adma.201503186
    [45] CHEN J, HUANG X Y, SUN B, et al. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability[J]. ACS Nano,2019,13(1):337-345. doi: 10.1021/acsnano.8b06290
    [46] ZHU Y K, ZHU Y J, HUANG X Y, et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets[J]. Advanced Energy Materials,2019,9(36):190186.
    [47] LIU F H, LI Q, CUI J, et al. High-energy-density dielectric polymer nanocomposites with trilayered architecture[J]. Advanced Functional Materials,2017,27(20):1606292. doi: 10.1002/adfm.201606292
    [48] XIE Y C, JIANG W R, FU T, et al. Achieving high energy density and low loss in PVDF/BST nanodielectrics with enhanced structural homogeneity[J]. ACS Applied Materials & Interfaces,2018,10(34):29038-29047.
    [49] XIE B, ZHANG Q, ZHANG H B, et al. Largely enhanced ferroelectric and energy storage performances of P(VDF-CTFE) nanocomposites at a lower electric field using BaTiO3 nanowires by stirring hydrothermal method[J]. Ceramics International,2016,42(16):19012. doi: 10.1016/j.ceramint.2016.09.057
    [50] XIE Y C, YU Y Y, FENG Y F, et al. Fabrication of stretchable nanocomposites with high energy density and low loss from crosslinked PVDF filled with poly(dopamine) encapsulated BaTiO3[J]. ACS Applied Materials & Interfaces,2017,9(3):2995-3005.
    [51] XIE Y C, WANG J, YU Y Y, et al. Enhancing breakdown strength and energy storage performance of PVDF-based nanocomposites by adding exfoliated boron nitride[J]. Applied Surface Science,2018,440:1150-1158. doi: 10.1016/j.apsusc.2018.01.301
    [52] 夏卫民, 张志成, 陈源清, 等. 界面改善对P(VDF-CTFE)/BST复合材料介电和储能性能影响[J]. 功能材料, 2012, 43(14):1894-1898. doi: 10.3969/j.issn.1001-9731.2012.14.020

    XIA Weimin, ZHANG Zhicheng, CHEN Yuanqing, et al. Interface fabricating to improve the dielectric and energy storage properties of P(VDF-CTFE)/BST composites[J]. Functional Materials,2012,43(14):1894-1898(in Chinese). doi: 10.3969/j.issn.1001-9731.2012.14.020
    [53] CHEN X Z, LI Z W, CHENG Z X, et al. Greatly enhanced energy density and patterned films induced by photo crosslinking of poly(vinylidene fluoride-chlorotrifluoroethylene)[J]. Macromolecular Rapid Communications,2011,32(1):94-99. doi: 10.1002/marc.201000478
    [54] CHEN Y X, YUE Y F, LIU J, et al. Ferroelectric nanocomposite networks with high energy storage capacitance and low ferroelectric loss by designing hierarchical interface architecture[J]. Physical Chemistry Chemical Physics,2019,21(37):20661. doi: 10.1039/C9CP03389K
    [55] SADHU S P P, SIDDABATTUNI S, MUTHUKUMAR V S, et al. Enhanced dielectric properties and energy storage density of surface engineered BCZT/PVDF-HFP nanodielectrics[J]. Journal of Materials Science: Materials in Electronics,2018,29:6174-6182. doi: 10.1007/s10854-018-8592-4
    [56] LI J L, YIN J H, YANG C, et al. Enhanced dielectric performance and energy storage of PVDF-HFP-based composites induced by surface charged Al2O3[J]. Journal of Polymer Science Part B: Polymer Physics,2019,57(10):574-583. doi: 10.1002/polb.24814
    [57] SHEN Z H, WANG J J, JIANG J Y, et al. Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics[J]. Nature Communications,2019,10(1):1843. doi: 10.1038/s41467-019-09874-8
    [58] PAN Z B, DING Q L, YAO L M, et al. Simultaneously enhanced discharge energy density and efficiency in nanocomposite film capacitors utilizing two-dimensional NaNbO3@Al2O3 platelets[J]. Nanoscale,2019,11(21):10546-10554. doi: 10.1039/C9NR00874H
    [59] 徐磊. 高储能Ba0.6Sr0.4TiO3纳米纤维网络/PVDF多层复合薄膜制备及性能研究[D]. 武汉: 华中科技大学, 2019.

    XU Lei. Research on preparation and energy storage performance of Ba0.6Sr0.4TiO3 nanofibers network/PVDF multilayer composites with high energy storage[D]. Wuhan: Huazhong University of Science and Technology, 2019(in Chinese).
    [60] ZHOU L, FU Q Y, XUE F, et al. Multiple interfacial Fe3O4@BaTiO3/P(VDF-HFP) core-shell-matrix films with internal barrier layer capacitor (IBLC) effects and high energy storage density[J]. ACS Applied Materials & Interfaces,2017,9(46):40792-40800.
    [61] EHRHARDT C, FETTKENHAUER C, GLENNEBERG J, et al. BaTiO3/P(VDF-HFP) nanocomposite dielectrics-influence of surface modification and dispersion additives[J]. Materials Science and Engineering B,2013,178(13):881-888. doi: 10.1016/j.mseb.2013.04.013
    [62] WANG G Y, HUANG X Y, JIANG P K. Bio-inspired fluoro-polydopamine meets barium titanate nanowires: A perfect combination to enhance energy storage capability of polymer nanocomposites[J]. ACS Applied Materials Interfaces,2017,9(8):7547-7555. doi: 10.1021/acsami.6b14454
    [63] YANG K, HUANG X Y, HUANG Y H, et al. Fluoro-polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: Toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application[J]. Chemistry Materials,2013,25(11):2327-2338. doi: 10.1021/cm4010486
    [64] GUAN F X, YANG L Y, WANG J, et al. Confined ferroelectric properties in poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymers for electric energy storage applications[J]. Advanced Functional Materials,2011,21(16):3176-3188. doi: 10.1002/adfm.201002015
    [65] LI J J, HU X, GAO G X, et al. Tuning phase transition and ferroelectric properties of poly(vinylidene fluoride-co-trifluoroethylene) via grafting with desired poly(methacrylic ester)s as side chains[J]. Journal of Materials Chemistry C,2013,1(6):1111-1121. doi: 10.1039/C2TC00431C
    [66] LI J J, TAN S B, DING S J, et al. High-field antiferroelectric behaviour and minimized energy loss in poly(vinylidene-co-trifluoroethylene)-graft-poly(ethyl methacrylate) for energy storage application[J]. Journal of Materials Chemistry,2012,22(44):23468-23476. doi: 10.1039/c2jm35532a
    [67] TAN S B, HU X, DING S J, et al. Significantly improving dielectric and energy storage properties via uniaxially stretching crosslinked P(VDF-co-TrFE) films[J]. Journal of Materials Chemistry A,2013,1(35):10353-10361. doi: 10.1039/c3ta11484h
    [68] TANG Y S, XU S, XIE Y C, et al. Interfacial RAFT polymerization induced ultra low dielectric loss ceramic/cyanate ester composites[J]. Composite Science and Technology,2016,124:10-16. doi: 10.1016/j.compscitech.2016.01.006
    [69] XIE L Y, HUANG X Y, YANG K, et al. “Grafting to” route to PVDF-HFP-g-GMA/BaTiO3 nanocomposites with high dielectric constant and high thermal conductivity for energy storage and thermal management applications[J]. Journal of Materials Chemistry,2014,2(15):5244-5251. doi: 10.1039/c3ta15156e
    [70] ZHANG Z, YANG H, WANG H, et al. Enhanced dielectric properties and energy density of flexible KTa0.2Nb0.8O3-BaTiO3/P(VDF-TrFE-CTFE) nanocomposite[J]. Journal of Materials Science: Materials in Electronics,2019,30:2501-2511. doi: 10.1007/s10854-018-0524-9
    [71] CHEN S, LV X G, HAN X H, et al. Significantly improved energy density of BaTiO3 nanocomposites by accurate interfacial tailoring using a novel rigid-fluoro-polymer[J]. Polymer Chemistry,2018,9(5):548-557. doi: 10.1039/C7PY01914A
    [72] QIAN K, LV X G, CHEN S, et al. Interfacial engineering tailoring the dielectric behavior and energy density of BaTiO3/P(VDF-TrFE-CTFE) nanocomposites by regulating a liquid-crystalline polymer modifier structure[J]. Daltontransactions,2018,47(36):12759. doi: 10.1039/C8DT02626B
    [73] LIU F H, LI Q, LI Z Y, et al. Ternary PVDF-based terpolymer nanocomposites with enhanced energy density and high power density[J]. Composites Part A: Applied Science and Manufacturing,2018,109:597-603. doi: 10.1016/j.compositesa.2018.03.019
    [74] BAO Z W, HOU C M, SHEN Z H, et al. Negatively charged nanosheets significantly enhance the energy-storage capability of polymer-based nanocomposites[J]. Advanced Materials,2020,32(25):1907227.
    [75] HU X, CUI G P, ZHANG Y J, et al. Copper(II) photoinduced graft modification of P(VDF-co-CTFE)[J]. European Polymer Journal,2018,100:228-232. doi: 10.1016/j.eurpolymj.2018.01.033
    [76] HU X, ZHANG Y J, CUI G P, et al. Poly(vinylidene fluoride-co-chlorotrifluoroethylene) modification via organocatalyzed atom transfer radical polymerization[J]. Macromolecular Rapid Communications,2017,38(21):1700399. doi: 10.1002/marc.201700399
    [77] HU X, CUI G P, ZHU N, et al. Photoinduced Cu(II)-mediated RDRP to P(VDF-co-CTFE)-g-PAN[J]. Polymers,2018,10(1):68. doi: 10.3390/polym10010068
    [78] HU X, LI N, HENG T T, et al. Functionalization of PVDF-based copolymer via photo-induced panisaldehyde catalyzed atom transfer radical polymerization[J]. Reactive and Functional Polymers,2020,150:104541. doi: 10.1016/j.reactfunctpolym.2020.104541
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1501
  • HTML全文浏览量:  711
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 录用日期:  2020-10-26
  • 网络出版日期:  2020-10-30
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回