留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti3C2Tx MXene/聚乙烯醇复合材料的介电性能

补淇 胡静 雷鑫 何嘉欣 王羽双 欧阳跃军 万维

补淇, 胡静, 雷鑫, 等. Ti3C2Tx MXene/聚乙烯醇复合材料的介电性能[J]. 复合材料学报, 2021, 38(6): 1922-1928. doi: 10.13801/j.cnki.fhclxb.20201030.001
引用本文: 补淇, 胡静, 雷鑫, 等. Ti3C2Tx MXene/聚乙烯醇复合材料的介电性能[J]. 复合材料学报, 2021, 38(6): 1922-1928. doi: 10.13801/j.cnki.fhclxb.20201030.001
BU Qi, HU Jing, LEI Xin, et al. Dielectric properties of Ti3C2Tx MXene/polyvinyl alcohol composites[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1922-1928. doi: 10.13801/j.cnki.fhclxb.20201030.001
Citation: BU Qi, HU Jing, LEI Xin, et al. Dielectric properties of Ti3C2Tx MXene/polyvinyl alcohol composites[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1922-1928. doi: 10.13801/j.cnki.fhclxb.20201030.001

Ti3C2Tx MXene/聚乙烯醇复合材料的介电性能

doi: 10.13801/j.cnki.fhclxb.20201030.001
基金项目: 湖南省自然科学基金项目(2018JJ314);湖南省教育厅优秀青年项目(18B493);聚乙烯醇纤维材料制备技术湖南省工程实验室重点开放项目(HGI201802)
详细信息
    通讯作者:

    万维,博士,副教授,研究方向为电介质功能材料  E-mail:avealin1228@163.com

  • 中图分类号: TB332

Dielectric properties of Ti3C2Tx MXene/polyvinyl alcohol composites

  • 摘要: 以二维过渡金属碳化物Ti3C2Tx MXene作为填料,非铁电、可生物降解的高分子物质聚乙烯醇(PVA)作为基体,通过溶液涂膜法制备了具有高介电常数的Ti3C2Tx MXene/PVA柔性复合材料。研究了Ti3C2Tx MXene充填量对复合材料介电性能的影响。Ti3C2Tx MXene/PVA复合材料的介电性能变化遵循逾渗规律,随着Ti3C2Tx MXene充填量的增加,Ti3C2Tx MXene/PVA复合材料的介电常数呈先增加后减小的变化规律,Ti3C2Tx MXene充填量为20wt%的Ti3C2Tx MXene/PVA复合材料介电常数在20 Hz时高达577.3,比纯PVA的介电常数(10.5)提升了5 398%。但是,当Ti3C2Tx MXene充填量超过20wt%后,Ti3C2Tx MXene/PVA复合材料的介电常数急剧下降,介电损耗快速上升,表现出明显的逾渗行为。

     

  • 图  1  Ti3C2Tx MXene断面 (a) 、表面 (b) 的FE-SEM图像及XRD图谱 (c)

    Figure  1.  FE-SEM images of the cross-section (a) and surface (b), and XRD pattern (c) of Ti3C2Tx MXene

    图  2  Ti3C2Tx MXene/PVA复合材料的光学照片 (a),10wt% Ti3C2Tx含量复合薄膜表面 (b)、20wt% Ti3C2Tx含量复合薄膜表面 (c)、20wt% Ti3C2Tx含量复合薄膜断面 (d) 的FE-SEM图像及XRD图谱 (e)

    Figure  2.  Optical photograph of Ti3C2Tx MXene/PVA composites (a), FE-SEM images of surface of the composite films with 10wt% Ti3C2Tx (b), surface of the composite films with 20wt% Ti3C2Tx (c) and cross-section of the composite films with 20wt% Ti3C2Tx (d) and XRD patterns of Ti3C2Tx MXene/PVA composites (e)

    图  3  不同Ti3C2Tx MXene充填量下Ti3C2Tx MXene/PVA复合材料的介电常数 (a)、介电损耗 (b) 及电导率 (c) 随频率的变化关系

    Figure  3.  Dielectric constant (a) , dielectric loss (b) and AC conductivity (c) of Ti3C2Tx MXene/PVA composites with different Ti3C2Tx MXene contents changing with frequency

    图  4  Ti3C2Tx MXene复合材料充填量对Ti3C2Tx MXene/PVA复合材料的介电常数 (a) 及介电损耗 (b) 的影响

    Figure  4.  Effect of Ti3C2Tx MXene loading on dielectric constant (a) and dielectric loss (b) of Ti3C2Tx MXene/PVA composites

    图  5  不同Ti3C2Tx MXene复合材料充填量时Ti3C2Tx MXene/PVA复合材料的Cole-Cole图

    Figure  5.  Cole-Cole plots of Ti3C2Tx MXene/PVA composites with different Ti3C2Tx MXene contents

  • [1] GUO M F, JIANG J Y, SHEN Z H, et al. High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: Enhanced breakdown strength and improved discharge efficiency[J]. Materials Today,2019,29:49-67. doi: 10.1016/j.mattod.2019.04.015
    [2] LUO H, ZHOU X F, ELLINGFORD C, et al. Interface design for high energy density polymer nanocomposites[J]. Chemical Society Reviews,2019,48:4424-4465. doi: 10.1039/C9CS00043G
    [3] ZENG Y, SHEN Z H, SHEN Y, et al. High energy density and efficiency achieved in nanocomposite film capacitors via structure modulation[J]. Applied Physics Letters,2018,112:103902. doi: 10.1063/1.5012006
    [4] DENG Q H, FENG Y F, LI W, et al. Strong interface effect induced high-k property in polymer based ternary compo-sites filled with 2D layered Ti3C2 MXene nanosheets[J]. Journal of Materials Science: Materials in Electronics,2019,30:9106-9113. doi: 10.1007/s10854-019-01239-7
    [5] PRATEEK, BHUNIA R, SIDDIQUI S, et al. Significant enhanced energy density by tailoring the interface in hierarchically structured TiO2-BaTiO3-TiO2 nanofillers in PVDF-based thin-film polymer nanocomposites[J]. ACS Applied Materials & Interfaces,2019,11:14329-14339.
    [6] TOMARA G N, KERASIDOU A P, PATSIDIS A C, et al. Dielectric response and energy storage efficiency of low content TiO2-polymer matrix nanocomposites[J]. Composites Part A: Applied Science and Manufacturing,2015,71:204-211. doi: 10.1016/j.compositesa.2015.01.017
    [7] CAI Z M, WANG X H, LUO B C, et al. Laminated structure-induced high dielectric strength and energy storage density in dielectric composites[J]. Composites Science and Technology,2019,173:61-65. doi: 10.1016/j.compscitech.2019.01.029
    [8] LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science,2013,341:1502-1505. doi: 10.1126/science.1241488
    [9] LI Z, REN C E, ZHAO MM Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111:16676-16681. doi: 10.1073/pnas.1414215111
    [10] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23:4248-4253. doi: 10.1002/adma.201102306
    [11] TU S B, JIANG Q, ZHANG X X, et al. Large dielectric constant enhancement in MXene percolative polymer compo-sites[J]. ACS Nano,2018,12(4):3369-3377. doi: 10.1021/acsnano.7b08895
    [12] FENG Y F, WU Q, DENG Q H, et al. High dielectric and breakdown properties obtained in a PVDF based nanocomposite with sandwich structure at high temperature via all-2D design[J]. Journal of Materials Chemistry C,2019,7:6744-6751. doi: 10.1039/C9TC01378D
    [13] LI W Y, SONG Z Q, ZHONG J M, et al. Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance[J]. Journal of Materials Chemistry C,2019,7:10371-10378. doi: 10.1039/C9TC02715G
    [14] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516:78-81. doi: 10.1038/nature13970
    [15] DAI Z H, LI T, GAO Y, et al. Improved dielectric and energy storage properties of poly(vinyl alcohol) nanocomposites by strengthening interfacial hydrogen-bonding interaction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2018,548:179-190.
  • 加载中
图(5)
计量
  • 文章访问数:  2036
  • HTML全文浏览量:  503
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-27
  • 录用日期:  2020-10-26
  • 网络出版日期:  2020-10-30
  • 刊出日期:  2021-06-23

目录

    /

    返回文章
    返回