留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陶瓷纤维增强SiO2气凝胶复合材料面内拉伸非均匀全场应变测量与分析

吕双祺 孙燕涛 腾雪峰 杨晓光 石多奇

吕双祺, 孙燕涛, 腾雪峰, 等. 陶瓷纤维增强SiO2气凝胶复合材料面内拉伸非均匀全场应变测量与分析[J]. 复合材料学报, 2021, 38(7): 2336-2347. doi: 10.13801/j.cnki.fhclxb.20201029.001
引用本文: 吕双祺, 孙燕涛, 腾雪峰, 等. 陶瓷纤维增强SiO2气凝胶复合材料面内拉伸非均匀全场应变测量与分析[J]. 复合材料学报, 2021, 38(7): 2336-2347. doi: 10.13801/j.cnki.fhclxb.20201029.001
LV Shuangqi, SUN Yantao, TENG Xuefeng, et al. Measurement and analysis of in-plane tensile non-uniform full-field strain of ceramic fiber reinforced SiO2 aerogel composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2336-2347. doi: 10.13801/j.cnki.fhclxb.20201029.001
Citation: LV Shuangqi, SUN Yantao, TENG Xuefeng, et al. Measurement and analysis of in-plane tensile non-uniform full-field strain of ceramic fiber reinforced SiO2 aerogel composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2336-2347. doi: 10.13801/j.cnki.fhclxb.20201029.001

陶瓷纤维增强SiO2气凝胶复合材料面内拉伸非均匀全场应变测量与分析

doi: 10.13801/j.cnki.fhclxb.20201029.001
基金项目: 国家自然科学基金(51772009);中国民用航空飞行学院科研基金(J2019-025)
详细信息
    通讯作者:

    石多奇,博士,教授,博士生导师,研究方向为高温合金和复合材料本构关系、高温结构强度 E-mail:shdq@buaa.edu.cn

  • 中图分类号: TB332

Measurement and analysis of in-plane tensile non-uniform full-field strain of ceramic fiber reinforced SiO2 aerogel composites

  • 摘要: 通过设计圆弧边缘夹持方案和狗骨形拉伸试样,开展了陶瓷纤维增强SiO2气凝胶复合材料室温环境中的面内拉伸性能试验,采用数字图像相关方法对陶瓷纤维增强SiO2气凝胶复合材料表面的全场变形进行测量和分析,并结合获得的非均匀应变分布情况进一步讨论其力学行为特征和变形断裂机制。结果表明:纤维增强增韧机制使陶瓷纤维增强SiO2气凝胶复合材料的面内拉伸行为表现出一定的非线性及韧性特征;在一定载荷水平下,陶瓷纤维增强SiO2气凝胶复合材料表面应变分布呈显著的非均匀特征,与内部随机的纤维排布及各处传力情况不同相关,可选择较大计算区域进行平均化处理来减弱对测试中应变度量的影响;在加载和断裂过程中陶瓷纤维增强SiO2气凝胶复合材料表面存在局部应变集中现象,并随着裂纹扩展而发生演变,面内拉伸载荷下的宏观断口呈锯齿状特征,主要由剪应力主导的基体断裂、法向针刺对纤维铺层的约束等原因所致。本文研究结果为隔热复合材料的强韧化性能提高指明了方向。

     

  • 图  1  陶瓷纤维增强SiO2气凝胶复合材料中纤维铺层结构和材料方向示意图

    Figure  1.  Schematic drawing of fiber layered structure and material orientations in ceramic fiber reinforced SiO2 aerogel composites

    图  2  陶瓷纤维增强SiO2气凝胶复合材料面内方向显微结构

    Figure  2.  Microstructures in in-plane direction of ceramic fiber reinforced SiO2 aerogel composites

    图  3  面内拉伸夹持与加载夹具

    Figure  3.  Gripping and loading fixture in in-plane tensile tests

    图  4  面内拉伸狗骨形试样型式与尺寸

    Figure  4.  Dog bone type in-plane tensile specimen and its dimensions

    图  5  陶瓷纤维增强SiO2气凝胶复合材料面内拉伸应力-应变曲线

    Figure  5.  In-plane tensile stress-strain curves of ceramic fiber reinforced SiO2 aerogel composites

    图  6  陶瓷纤维增强SiO2气凝胶复合材料的拉伸应变在计算区域内的全场分布(2D)

    Figure  6.  Full field tensile strain distribution in calculated area (2D) of ceramic fiber reinforced SiO2 aerogel composites

    图  7  陶瓷纤维增强SiO2气凝胶复合材料的拉伸应变在计算区域内的全场分布(3D)

    Figure  7.  Full field tensile strain distribution in calculated area (3D) of ceramic fiber reinforced SiO2 aerogel composites

    图  8  陶瓷纤维增强SiO2气凝胶复合材料沿加载方向选定路径上的拉伸应变分布

    Figure  8.  Tensile strain distribution along slected path in loading direction of ceramic fiber reinforced SiO2 aerogel composites

    图  9  陶瓷纤维增强SiO2气凝胶复合材料计算区域不同局部位置的平均应变比较

    Figure  9.  Comparison of average strains at different local locations in calculated area of ceramic fiber reinforced SiO2 aerogel composites

    图  10  陶瓷纤维增强SiO2气凝胶复合材料不同大小区域提取的平均应变比较

    Figure  10.  Comparison of average strain extracted from different size regions of ceramic fiber reinforced SiO2 aerogel composites

    图  11  两种平均化处理的应变度量方法

    Figure  11.  Two strain measurement methods for average treatment

    图  12  两种应变度量方法的陶瓷纤维增强SiO2气凝胶复合材料应变提取结果比较

    Figure  12.  Comparison of strain results from two strain measurement methods of ceramic fiber reinforced SiO2 aerogel composites

    图  13  陶瓷纤维增强SiO2气凝胶复合材料面内拉伸应力-时间曲线

    Figure  13.  In-plane tensile stress-time curve of ceramic fiber reinforced SiO2 aerogel composites

    图  14  陶瓷纤维增强SiO2气凝胶复合材料面内拉伸试验不同时刻的应变分布变化情况

    Figure  14.  Strain distribution changes in in-plane tensile tests at different times of ceramic fiber reinforced SiO2 aerogel composites

    图  15  陶瓷纤维增强SiO2气凝胶复合材料局部应变集中的发生过程

    Figure  15.  Generation process of local strain concentration of ceramic fiber reinforced SiO2 aerogel composites

    图  16  陶瓷纤维增强SiO2气凝胶复合材料不同局部区域的应变-时间历程

    Figure  16.  Strain change processes of different local regions of ceramic fiber reinforced SiO2 aerogel composites

    P1, P5, P6, P10—Far field region; P2, P4, P7, P9—Transition region; P3, P8—Near crack area

    图  17  陶瓷纤维增强SiO2气凝胶复合材料试样面内拉伸的断裂模式

    Figure  17.  Fracture modes of in-plane tensile ceramic fiber reinforced SiO2 aerogel composite specimens

    图  18  陶瓷纤维增强SiO2气凝胶复合材料在不同方向上的面内拉伸裂纹扩展

    Figure  18.  In-plane tensile crack propagation in different directions of ceramic fiber reinforced SiO2 aerogel composites

    图  19  陶瓷纤维增强SiO2气凝胶复合材料纤维拔出、界面脱黏和裂纹偏转的SEM图像

    Figure  19.  SEM images of fiber pullout, interface debonding and crack deflection of ceramic fiber reinforced SiO2 aerogel composites

    表  1  陶瓷纤维增强SiO2气凝胶复合材料面内拉伸弹性模量和抗拉强度

    Table  1.   In-plane tensile elastic modulus and strength of ceramic fiber reinforced SiO2 aerogel composites

    Test numberE/MPaσb/MPa
    Set 1 542.86 1.00
    Set 2 479.69 1.05
    Set 3 414.91 1.07
    Notes:E—Elastic modulus; σb—Tensile strength.
    下载: 导出CSV
  • [1] AEGERTER M. Aerogels handbook[M]. New York: Springer, 2011.
    [2] KOEBEL M, RIGACCI A, ACHARD P. Aerogel-based thermal superinsulation: An overview[J]. Journal of Sol-Gel Science and Technology,2012,63(3):315-339. doi: 10.1007/s10971-012-2792-9
    [3] 冯坚. 气凝胶高效隔热材料[M]. 北京: 科学出版社, 2016.

    FENG Jian. Aerogel materials for high efficiency thermal insulation[M]. Beijing: Science Press, 2016(in Chinese).
    [4] 瑚佩, 姜勇刚, 张忠明, 等. 耐高温、高强度隔热复合材料研究进展[J]. 材料导报, 2020, 34(4):7082-7090.

    HU Pei, JIANG Yonggang, ZHANG Zhongming, et al. Research process on high-temperature insulation composites with high mechanical property[J]. Materials Reports,2020,34(4):7082-7090(in Chinese).
    [5] 高庆福. 纳米多孔SiO2、Al2O3气凝胶及其高效隔热复合材料研究[D]. 长沙: 国防科学技术大学, 2009.

    GAO Qingfu. Nano-porous silica, alumina aerogels and thermal super-insulation composites[D]. Changsha: National University of Defense Technology, 2009(in Chinese).
    [6] 赵南, 冯坚, 姜勇刚, 等. 纤维增强Si-C-O气凝胶隔热复合材料的制备与表征[J]. 硅酸盐学报, 2012, 40(10):1473-1477.

    ZHAO Nan, FENG Jian, JIANG Yonggang, et al. Preparation and characterization of Si-C-O aerogel composites for thermal insulation[J]. Journal of the Chinese Ceramic Society,2012,40(10):1473-1477(in Chinese).
    [7] HOU X, ZHANG R, FANG D. An ultralight silica-modified ZrO2- SiO2 aerogel composite with ultra-low thermal conductivity and enhanced mechanical strength[J]. Scripta Materialia,2018,143:113-116. doi: 10.1016/j.scriptamat.2017.09.028
    [8] 于登云. 新型航天器发展对力学学科的挑战[J]. 科学通报, 2015, 60(12):1085-1094.

    YU Dengyun. Mechanical challenges in advanced spacecraft development[J]. Chinese Science Bulletin,2015,60(12):1085-1094(in Chinese).
    [9] 孟松鹤, 杨强, 霍施宇, 等. 一体化热防护技术现状和发展趋势[J]. 宇航学报, 2013, 34(10):1295-1302. doi: 10.3873/j.issn.1000-1328.2013.10.001

    MENG Songhe, YANG Qiang, HUO Shiyu, et al. State-of-arts and trend of integrated thermal protection systems[J]. Journal of Astronautics,2013,34(10):1295-1302(in Chinese). doi: 10.3873/j.issn.1000-1328.2013.10.001
    [10] 孙燕涛, 石多奇, 杨晓光, 等. 纤维增强SiO2气凝胶复合材料压缩性能和变形机制[J]. 复合材料学报, 2013, 30(4):225-230.

    SUN Yantao, SHI Duoqi, YANG Xiaoguang, et al. Compression and deformation mechanisms of SiO2 fiber-reinforced aerogel composite[J]. Acta Materiae Compositae Sinica,2013,30(4):225-230(in Chinese).
    [11] 米春虎, 姜勇刚, 石多奇, 等. 陶瓷纤维增强氧化硅气凝胶复合材料力学性能试验[J]. 复合材料学报, 2014, 31(3):635-643.

    MI Chunhu, JIANG Yonggang, SHI Duoqi, et al. Mechanical property test of ceramic fiber reinforced silica aerogel composites[J]. Acta Materiae Compositae Sinica,2014,31(3):635-643(in Chinese).
    [12] YANG J, LI S, LUO Y, et al. Compressive properties and fracture behavior of ceramic fiber-reinforced carbon aerogel under quasi-static and dynamic loading[J]. Carbon,2011,49(5):1542-1549. doi: 10.1016/j.carbon.2010.12.021
    [13] YANG J, LI S, YAN L, et al. Dynamic compressive properties and failure mechanism of glass fiber reinforced silica hydrogel[J]. Materials Science & Engineering A,2010,527(3):824-827.
    [14] YANG X, SUN Y, SHI D, et al. Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite[J]. Materials Science & Engineering A,2011,528(13):4830-4836.
    [15] YANG X, WEI J, SHI D, et al. Comparative investigation of creep behavior of ceramic fiber-reinforced alumina and silica aerogel[J]. Materials Science & Engineering A,2014,609:125-130.
    [16] PAN B, QIAN K, XIE H, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review[J]. Measurement Science and Technology,2009,20(6):062001. doi: 10.1088/0957-0233/20/6/062001
    [17] 刘小勇. 数字图像相关方法及其在材料力学性能测试中的应用[D]. 长春: 吉林大学, 2012.

    LIU Xiaoyong. Digital image correlation method and its application on mechanical properties measurement of materials[D]. Changchun: Jilin University, 2012(in Chinese).
    [18] HUANG J, SHI D Q, YANG X G, et al. Experimental investigation and numerical modeling for elastoplastic notch-root stress/strain analysis under monotonic loadings[J]. Science China Technologial Sciences,2014,57(7):1411-1424. doi: 10.1007/s11431-014-5555-8
    [19] MAO W G, CHEN J, SI M S, et al. High temperature digital image correlation evaluation of in-situ failure mechanism: An experimental framework with application to C/SiC composites[J]. Materials Science & Engineering A,2016,665:26-34.
    [20] KASHFUDDOJA M, RAMJI M. Assessment of local strain field in adhesive layer of an unsymmetrically repaired CFRP panel using digital image correlation[J]. International Journal of Adhesion and Adhesives,2015,57:57-69. doi: 10.1016/j.ijadhadh.2014.10.005
    [21] 冯坚, 高庆福, 冯军宗, 等. 纤维增强SiO2气凝胶隔热复合材料的制备及其性能[J]. 国防科技大学学报, 2010, 32(1):40-44. doi: 10.3969/j.issn.1001-2486.2010.01.008

    FENG Jian, GAO Qingfu, FENG Junzong, et al. Preparation and properties of fiber-reinforced SiO2 aerogel insulation composites[J]. Journal of National University of Defense Technology,2010,32(1):40-44(in Chinese). doi: 10.3969/j.issn.1001-2486.2010.01.008
    [22] ASTM International. Standard test method for monotonic tensile strength testing of continuous fiber-reinforced advanced ceramics with solid rectangular cross section test specimens at elevated temperatures: ASTM C1359—18[S]. West Conshohocken: ASTM International, 2018.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  1042
  • HTML全文浏览量:  447
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 录用日期:  2020-10-19
  • 网络出版日期:  2020-10-29
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回