留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合盐溶液环境下钢筋/混凝土Weibull耐久性寿命预测方法

李刊 魏智强 乔宏霞 路承功 郭健 黄尚攀

李刊, 魏智强, 乔宏霞, 等. 耦合盐溶液环境下钢筋/混凝土Weibull耐久性寿命预测方法[J]. 复合材料学报, 2021, 38(7): 2370-2382. doi: 10.13801/j.cnki.fhclxb.20201021.001
引用本文: 李刊, 魏智强, 乔宏霞, 等. 耦合盐溶液环境下钢筋/混凝土Weibull耐久性寿命预测方法[J]. 复合材料学报, 2021, 38(7): 2370-2382. doi: 10.13801/j.cnki.fhclxb.20201021.001
LI Kan, WEI Zhiqiang, QIAO Hongxia, et al. Weibull durability life prediction method of reinforced concrete in environment of coupled salt solution[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2370-2382. doi: 10.13801/j.cnki.fhclxb.20201021.001
Citation: LI Kan, WEI Zhiqiang, QIAO Hongxia, et al. Weibull durability life prediction method of reinforced concrete in environment of coupled salt solution[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2370-2382. doi: 10.13801/j.cnki.fhclxb.20201021.001

耦合盐溶液环境下钢筋/混凝土Weibull耐久性寿命预测方法

doi: 10.13801/j.cnki.fhclxb.20201021.001
基金项目: 国家自然科学基金(51168031;51868044);兰州理工大学红柳一流学科建设计划
详细信息
    通讯作者:

    乔宏霞,博士,教授,博士生导师,研究方向为高性能混凝土耐久性 E-mail:Hongxia_Qiao@163.com

  • 中图分类号: TU528

Weibull durability life prediction method of reinforced concrete in environment of coupled salt solution

  • 摘要: 根据兰州地铁沿线站台服役环境,配置含有SO42−、Cl、Mg2+的耦合盐溶液,将钢筋/混凝土试件置于耦合盐溶液中每隔90天利用电化学工作站进行无损检测,选择Weibull分布建模,通过最小二乘法和BLUE法得到退化分布的固定参数估计值和动态参数估计值。结果表明:耦合盐溶液环境中腐蚀离子通过扩散、渗透及电化学迁移等方式到达钢筋表面,导致钢筋附近pH值降低,钝化膜由完整状态过渡到局部破损状态。可靠度曲线均呈现出三阶段变化特点,动态参数估计值中三次型尺度参数的可靠性寿命最接近固定参数值可靠性寿命,失效率最大;指数型尺度参数可靠性寿命最短,失效率最小;幂次型介于两者之间。且动态参数函数必须满足一阶导数及函数值为正的要求,否则可靠度计算结果为复数。尺度参数的函数形式对可靠度曲线影响大于形状参数的函数形式对可靠度曲线的影响。尺度参数函数类型一定时,形状参数函数类型对寿命结果影响较大,尺度参数函数类型变化时,可靠性曲线均发生较大变化。

     

  • 图  1  电化学测试及三电极体系示意图

    Figure  1.  Diagrams of electrochemical test and three-electrode system

    图  2  钢筋/混凝土体系电化学等效拟合电路

    Figure  2.  Electrochemical equivalent fitting circuit of reinforced concrete system

    图  3  钢筋/混凝土在耦合盐溶液中的极化曲线

    Figure  3.  Polarization curves of reinforced concrete in environment of coupled salt solution

    图  4  钢筋/混凝土在耦合盐溶液中的交流阻抗图谱

    Figure  4.  Alternating current impedance spectra of reinforced concrete in environment of coupled salt solution

    图  5  钢筋/混凝土在耦合盐溶液中的电化学参数

    Figure  5.  Electrochemical parameters of reinforced concrete in environment of coupled salt solution

    图  6  钢筋/混凝土耐久性退化数据Weibull分布检验

    Figure  6.  Weibull distribution test of reinforced concrete durability degradation data

    图  7  钢筋/混凝土耐久性退化数据最小二乘法参数拟合

    Figure  7.  Parameter fitting by least square method of reinforced concrete durability degradation data

    图  8  钢筋/混凝土形状参数U拟合曲线

    Figure  8.  Fitting curve of shape parameter U of reinforced concrete

    图  9  钢筋/混凝土尺度参数V拟合曲线

    Figure  9.  Scale parameter V fitting curve of reinforced concrete

    图  10  不同参数类型下钢筋/混凝土可靠度曲线

    Figure  10.  Reliability curves of reinforced concrete with different parameter types

    图  11  不同参数类型下钢筋/混凝土密度及失效率曲线

    Figure  11.  Density and failure rate curves of reinforced concrete with different parameter types

    表  1  兰州地铁1号线部分站台地下水、土壤中主要腐蚀性离子浓度及腐蚀程度

    Table  1.   Concentration and degree of corrosive ions in underground water and soil of some platforms of subway line 1 in Lanzhou

    Subway siteLocationCorrosive ion concentration/(mg·L−1)Corrosion
    evaluation
    Durability environment
    category
    SO42−Mg2+ClpH
    Eastern market station Ground water 4250.7 595.6 1613.0 7.3 Strong corrosion Ⅴ-E
    Soil 696.4 48.6 205.6 7.7 Medium corrosion Ⅳ-D
    Jiaojia bay station Ground water 1657.0 255.3 762.2 7.3 Strong corrosion Ⅴ-E
    Soil 1248.8 54.7 195.0 7.8 Medium corrosion Ⅳ-D
    Gongxingdun station Ground water 4202.6 619.9 1595.0 7.4 Strong corrosion Ⅴ-E
    Soil 552.3 48.6 262.3 7.6 Medium corrosion Ⅳ-D
    Note:“Ⅳ-D”—Severe chloride environment; “Ⅴ-E”—Very severely chemical corrosion environment.
    下载: 导出CSV

    表  2  混凝土配合比设计

    Table  2.   Design of concrete mix proportion

    Cement/
    (kg·m−3)
    Fly ash/
    (kg·m−3)
    Aggregate/
    (kg·m−3)
    Sand/
    (kg·m−3)
    Water/
    (kg·m−3)
    Corrosion inhibito/
    (kg·m−3)
    Water to binder
    ratio (W/B)
    Compressive
    strength/MPa
    Slump/
    mm
    340 102 1100 720 141.5 36 0.32 48.3 175
    下载: 导出CSV

    表  3  腐蚀电位与钢筋锈蚀程度的对应关系[22]

    Table  3.   Corresponding relationship between corrosion potential and corrosion degree of reinforcement[22]

    American standard (ASTM C876—15[24]) Standard of Chinese metallurgical ministry
    Potential rangeCorrosion discriminantPotential rangeCorrosion discriminant
    >−200 mV 5% probability of corrosion >−250 mV No rust
    −200–−350 mV 50% probability of corrosion −250–−400 mV May be corroded
    <−350 mV 95% probability of corrosion <−400 mV Rust
    下载: 导出CSV

    表  4  腐蚀电流密度Icorr与钢筋锈蚀程度的对应关系[23]

    Table  4.   Corresponding relationship between corrosion current density Icorr and corrosion degree of reinforcement[23]

    Icorr/(μA·cm−2)Icorr<0.20.2<Icorr<0.50.5<Icorr<1.01.0<Icorr<10Icorr>10
    Corrosion
    status
    Passivation
    state
    Low corrosion
    condition state
    Moderate corrosion
    condition state
    Higher corrosion
    condition state
    Highly corrosive
    condition state
    下载: 导出CSV

    表  5  钢筋/混凝土耐久性参数拟合汇总

    Table  5.   Summary of durability parameter fitting of reinforced concrete

    Serial numberFunction formIndicatorParameterR2
    abcd
    Exponential y=abt U 0.1165 1.0016 0.9599
    V 6.71×10−4 1.0066 0.9884
    Power y=a+btc U 0.143 7.73×10−8 2.2707 0.9889
    V 0.0013 1.58×10−13 4.0799 0.9887
    Parabola y=a+bt+ct2 U 0.1459 −6.52×10−5 5.40×10−7 0.9898
    V 0.0055 −8.98×10−5 2.44×10−7 0.9604
    Cubic y=a+bt+ct2+dt3 U 0.1436 −1.26×10−5 3.48×10−7 1.77×10−10 0.9903
    V 4.01×10−4 3.03×10−5 −1.94×10−7 4.05×10−10 0.9885
    下载: 导出CSV
  • [1] 刘松玉, 李洪江, 童立元, 等. 城市地下结构污染腐蚀耐久性的若干问题[J]. 岩土工程学报, 2016, 38(s2):7-17.

    LIU S Y, LI H J, TONG L Y, et al. Some problems on polluted erosive durability of urban underground structures[J]. Journal of Geotechnical Engineering,2016,38(s2):7-17(in Chinese).
    [2] 陈晓斌, 唐孟雄, 马昆林. 地下混凝土结构硫酸盐及氯盐侵蚀的耐久性实验[J]. 中南大学学报(自然科学版), 2012, 43(7):2803-2812.

    CHEN X B, TANG M X, MA K L. Underground concrete structure exposure tosulfate and chloride invading environment[J]. Journal of Central South University (Natural Science Edition),2012,43(7):2803-2812(in Chinese).
    [3] CUI Z, ALIPOUR A. Concrete cover cracking and service life prediction of reinforced concrete structures in corrosive environments[J]. Construction and Building Materials,2018,159:652-671. doi: 10.1016/j.conbuildmat.2017.03.224
    [4] DUAN A, DAI J, JIN W. Probabilistic approach for durability design of concrete structures in marine environments[J]. Cement and Concrete Research,2015,27(2):A4014007.
    [5] MITSUYOSHI A, DAN M, FRANGOR P, et al. Reliability-based durability design and service life assessment of reinforced concrete deck slab of jetty structures[J]. Structure and Infrastructure Engineering,2017,13(4):468-477. doi: 10.1080/15732479.2016.1164725
    [6] 金伟良, 钟小平. 结构全寿命的耐久性与安全性、适用性的关系[J]. 建筑结构学报, 2009, 30(6):1-7.

    JIN W L, ZHONG X P. Relationship of structural durability with structural safety and serviceability in whole life cycle[J]. Journal of Architectural Structure,2009,30(6):1-7(in Chinese).
    [7] 潘洪科, 牛季收, 杨林德, 等. 地下工程砼结构基于碳化作用的耐久性劣化模型[J]. 工程力学, 2008, 25(7):172-178.

    PAN H K, NIU J S, YANG L D, et al. The durability deterioration model based on carbonation for underground concrete structures[J]. Engineering Mechanics,2008,25(7):172-178(in Chinese).
    [8] 潘洪科, 边亚东, 杨林德. 钢筋混凝土结构基于耐久性劣化度的可靠性分析[J]. 建筑结构学报, 2011, 32(1):105-109.

    PAN H K, BIAN Y D, YANG L D. Reliability analysis of reinforced concrete structure based on durability and deterioration grade[J]. Journal of Building Structure,2011,32(1):105-109(in Chinese).
    [9] LIM S, AKIYAMA M, FRANGOPOL D M, et al. Assessment of the structural performance of corrosion-affected RC members based on experimental study and probabilistic modeling[J]. Engineering Structures,2016,127:189-205.
    [10] ZHANG M, SONG H, LIM S, et al. Reliability estimation of corroded RC structures based on spatial variability using experimental evidence, probabilistic analysis and finite element method[J]. Engineering Structures,2019,192:30-52.
    [11] 刘海, 姚继涛, 牛荻涛. 钢筋混凝土结构基于锈胀开裂寿命准则的耐久性设计方法[J]. 西安建筑科技大学学报(自然科学版), 2009, 41(1):25-31.

    LIU H, YAO J T, NIU D T. Durability design of RC structures based on the life criterion of cover cracking[J]. Journal of Xi’an University of Architecture and Technology (Natural Science Edition),2009,41(1):25-31(in Chinese).
    [12] 王显利, 郑建军. 钢筋混凝土结构锈胀开裂及裂缝扩展试验研究[J]. 大连理工大学学报, 2009, 49(2):246-253.

    WANG X L, ZHENG J J. Experimental study of corrosion-induced crack initiation and propagation of reinforced concrete structures[J]. Journal of Dalian University of Technology,2009,49(2):246-253(in Chinese).
    [13] 唐孟雄, 陈晓斌. 基于扩孔理论的混凝土钢筋锈胀开裂分析[J]. 中南大学学报(自然科学版), 2010, 41(3):1172-1177.

    TANG M X, CHEN X B. Analysis of rebar rust cover cracking in reinforced concrete with cylindrical cavity expansion theory[J]. Journal of Central South University (Natural Science Edition),2010,41(3):1172-1177(in Chinese).
    [14] 毛江鸿, 金伟良, 李志远, 等. 氯盐侵蚀钢筋混凝土桥梁耐久性提升及寿命预测[J]. 中国公路学报, 2016, 29(1):61-66. doi: 10.3969/j.issn.1001-7372.2016.01.008

    MAO J H, JIN W L, LI Z Y, et al. Durability improvement and service life prediction of reinforced concrete bridge under chloride attack[J]. Journal of China Highway,2016,29(1):61-66(in Chinese). doi: 10.3969/j.issn.1001-7372.2016.01.008
    [15] 陈梦成, 袁素叶. 多重因素下混凝土氯离子扩散CA模型及寿命预测[J]. 铁道建筑, 2016(9):134-138. doi: 10.3969/j.issn.1003-1995.2016.09.34

    CHEN M C, YUAN S Y. Cellular automata model chloride ions diffusion in concrete influenced by multi-factors and life prediction of concrete[J]. Railway construction,2016(9):134-138(in Chinese). doi: 10.3969/j.issn.1003-1995.2016.09.34
    [16] 关博文, 杨涛, 於德美, 等. 干湿循环作用下钢筋混凝土氯离子侵蚀与寿命预测[J]. 材料导报, 2016, 30(20):152-157.

    GUAN B W, YANG T, YU D M, et al. Chloride erosion life prediction of steel reinforced concrete under dry and wet cycles[J]. Materials Reports,2016,30(20):152-157(in Chinese).
    [17] GHAVIJORBOZEH R, HAMADANI A Z. Application of the mixed Weibull distribution in machine reliability analysis for a cell formation problem[J]. International Journal of Quality & Reliability Management,2017,34(1):128-142.
    [18] LOWE P, LEWIS W. Reliability analysis based on the Weibull distribution: An application to maintenance float factors[J]. International Journal of Production Research,1983,21(4):461-470. doi: 10.1080/00207548308942382
    [19] 中华人民共和国住房和城乡建设部. 混凝土耐久性设计标准: GB/T 50476—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development People’s Republic of China. Standard for design of concrete structure durability: GB/T 50476—2019[S], Beijing: China Building Industry Press, 2019(in Chinese).
    [20] 朱彬荣. 基于概率方法的西部地区混凝土结构材料服役寿命预测[D]. 兰州: 兰州理工大学, 2017.

    ZHU B R. Service life prediction for concrete structure materials in western region of China based on probabilistic method[D]. Lanzhou: Lanzhou University of Technology, 2017(in Chinese).
    [21] 李岩, 蔡跃波, 葛燕, 等. 用交流阻抗谱研究活性砂浆胶结材料的电化学行为[J]. 硅酸盐学报, 2013, 41(2):199-204.

    LI Y, CAI Y B, GE Y, et al. Electrochemical performance of active mortar cementitious materials via AC impedance spectroscopy[J]. Bulletin of the Chinese Ceramic Society,2013,41(2):199-204(in Chinese).
    [22] 乔国富. 混凝土结构钢筋腐蚀的电化学特征与监测传感器系统[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    QIAO G F. Electrochemical characteristics and monitoring sensor system of the corrosion of the steel bar in concrete structure[D]. Harbin: Harbin Institute of Technology, 2008(in Chinese).
    [23] ERDOGDU S, BREMNER T W, KONDRATOVA I L. Accelerated testing of plain and epoxy-coated reinforcement in simulated seawater and chloride solutions[J]. Cement and Concrete Research,2001,31(6):861-867. doi: 10.1016/S0008-8846(01)00487-2
    [24] ASTM International. Standard test method for corrosion potentials of uncoated reinforcing steel in concrete: ASTM C876—15[S]. West Conshohocken: ASTM International, 2015.
    [25] 郭飞, 费庆国, 李彦斌, 等. 基于Weibull模型的C/C复合材料销钉剪切强度分布及本构关系[J]. 复合材料学报, 2019, 36(2):461-468.

    GUO F, FEI Q G, LI Y B, et al. Shear strength distribution and constitutive model of C/C composite on Weibull model[J]. Acta Materiae Compositae Sinica,2019,36(2):461-468(in Chinese).
    [26] 韩旭旭, 张程煜, 陈博, 等. 2D-SiCf/SiC复合材料抗拉强度统计分布规律[J]. 复合材料学报, 2019, 36(2):434-440.

    HAN X X, ZHANG C Y, CHEN B, et al. Statistical distribution of tensile strength of a 2D-SiCf/SiC composite[J]. Acta Materiae Compositae Sinica,2019,36(2):434-440(in Chinese).
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  861
  • HTML全文浏览量:  324
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 录用日期:  2020-10-07
  • 网络出版日期:  2020-10-21
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回