留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管复合亚麻纤维柔性传感材料的制备

苟巧林 李燕 李宏章 杨娅 迭恺 姜大伟 孙才英

苟巧林, 李燕, 李宏章, 等. 碳纳米管复合亚麻纤维柔性传感材料的制备[J]. 复合材料学报, 2021, 38(7): 2244-2253. doi: 10.13801/j.cnki.fhclxb.20201020.001
引用本文: 苟巧林, 李燕, 李宏章, 等. 碳纳米管复合亚麻纤维柔性传感材料的制备[J]. 复合材料学报, 2021, 38(7): 2244-2253. doi: 10.13801/j.cnki.fhclxb.20201020.001
GOU Qiaolin, LI Yan, LI Hongzhang, et al. Preparation of flexible sensing material of flax fiber combined carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2244-2253. doi: 10.13801/j.cnki.fhclxb.20201020.001
Citation: GOU Qiaolin, LI Yan, LI Hongzhang, et al. Preparation of flexible sensing material of flax fiber combined carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2244-2253. doi: 10.13801/j.cnki.fhclxb.20201020.001

碳纳米管复合亚麻纤维柔性传感材料的制备

doi: 10.13801/j.cnki.fhclxb.20201020.001
基金项目: 黑龙江省大学生创新创业训练计划项目(201910225211)
详细信息
    通讯作者:

    姜大伟,博士,副教授,研究方向为新型自修复材料的设计制备 E-mail: sharkwei12345@163.com

    孙才英,博士,教授,研究方向为木质材料改性 E-mail: sundeyee@126.com

  • 中图分类号: TB332

Preparation of flexible sensing material of flax fiber combined carbon nanotubes

  • 摘要: 导电的碳纳米管(CNTs)与不导电的亚麻纤维(CEL)相结合,可以得到柔性导电复合材料。拉伸或弯曲该材料对其导电性能影响很大。根据电阻变化率(ΔR/R0)可以敏锐地检测到材料形状的变化,因此CNTs/CEL复合材料适用于柔性传感器。用NaOH/尿素水体系处理亚麻纤维,得到CEL浆,再与不同浓度的CNTs悬浊液混合、抽滤、干燥,制得了CNTs/CEL复合材料。用XRD、FTIR和SEM分析了CNTs/CEL复合材料的结构形态。将CNTs/CEL复合材料制成形变传感器,用拉伸导电性能测试了拉伸对传感器导电性能的影响;将传感器应用到手指关节上,用电阻变化监测了手指弯曲时传感器的形变敏感性。结果发现,随着拉伸应变的增加,CNTs/CEL传感器的电阻变化率ΔR/R0逐渐增大,50%应变下,ΔR/R0达到980以上,能灵敏地感知到形状的变化;随着手指关节弯曲程度的增加,CNTs/CEL传感器电阻随之增大,手指最大程度弯曲时,CNTs/CEL传感器电阻可以达到12000 Ω以上,而且重复性良好。

     

  • 图  1  制得的CNTs/CEL复合材料

    Figure  1.  Prepared CNTs/CEL composite

    图  2  CNTs/CEL复合材料的FTIR图谱

    Figure  2.  FTIR of the CNTs/CEL composites (1#-Pure flax fiber,2#-1CNTs/CEL,3#-2CNTs/CEL, 4#-4CNTs/CEL, 5#-8CNTs/CEL,6#-16 CNTs/CEL)

    图  3  CNTs/CEL的XRD图谱

    Figure  3.  XRD pattern of CNTs/CELs

    图  4  CNTs/CEL复合材料表面形态(×100)

    Figure  4.  Morphology of the CNTs/CEL composites (×100)

    图  5  CNTs/CEL复合材料表面形态(×4000)

    Figure  5.  Morphologies of the CNTs/CEL composites (×4000)

    图  6  拉伸速度为5 mm/min的CNTs/CEL的ΔR/R0曲线

    Figure  6.  ΔR/R0 curve of CNTs/CEL with tensile velocity of 5 mm/min

    图  7  拉伸速度为5 mm/min和10 mm/min时CNTs/CEL的ΔR/R0比较图

    Figure  7.  Comparison of the ΔR/R0 of CNTs/CEL at tensile velocities of 5 mm/min and 10 mm/min

    图  8  拉伸应变50%和100 %时CNTs/CEL的ΔR/R0比较

    Figure  8.  Comparison of CNTs/CEL ΔR/R0 with tensile strain of 50% and 100%

    图  9  传感器在手指上的状态

    Figure  9.  State of the sensor on the finger

    图  10  手指弯曲时传感器电阻R变化情况

    Figure  10.  Variation of sensor resistance R with the bending of the finger

    表  1  碳纳米管/亚麻纤维复合材料(CNTs/CEL)的主要组成

    Table  1.   Main components of carbon nanotube/flax fiber composite materials (CNTs/CEL) composites

    Samplem1/gm2/mgc/(g·L−1)
    1CNTs/CEL 2 31.25 1
    2CNTs/CEL 2 62.5 2
    4CNTs/CEL 2 125 4
    8CNTs/CEL 2 250 8
    16CNTs/CEL 2 500 16
    32CNTs/CEL 2 1 000 32
    Notes: m1—Mass of the flax fiber; m2—Mass of the CNTs; c—Concentration of the used CNTs.
    下载: 导出CSV
  • [1] FENG J. Cellulose fibers[M]//Handbook of Fibrous Materials. Wiley-VCH Verlag GmbH & Co. KGaA, 2020, 95-124.
    [2] 明瑞豪, 杨革生, 李玉增, 等. 亚麻纤维/立构聚乳酸复合材料的制备与性能表征[J]. 高分子材料科学与工程, 2015, 36(5):169-172.

    MING Ruihao, YANG Gesheng, LI Yuzeng, et al. Preparation and characterization of flax fiber reinforced polylactid stereocomplex composites[J]. Polymer Materials Science and Engineering,2015,36(5):169-172(in Chinese).
    [3] NAYAK S Y, HECKADKA S S, SETH A, et al. Effect of chemical treatment on the physical and mechanical properties of flax fibers: A comparative assessment[J]. Materials Today: Proceedings,2020. doi: 10.1016/j.matpr.2020.07.380
    [4] TEIXEIRA M, SONNIER R, OTAZAGHINE B, et al. Radiation-grafting of flame retardants on flax fabrics—A comparison between different flame retardant structures[J]. Radiation Physics & Chemistry,2018,145:135-142.
    [5] 李代培, 马慧玲, 矫阳, 等. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3):6-16.

    DAI Pei, MA Huiling, JIAO Yang, et al. Radiation modification of nano-carbon materials and its application progress[J]. Materials Review,2019,33(3):6-16(in Chinese).
    [6] KOH A L, GIDCUMB E, ZHOU O, et al. Oxidation of carbon nanotubes in an ionizing environment[J]. Nano Letters,2016,16(2):856-863.
    [7] SHEN X J, HUANG P L, CHEN J H, et al. Comparison of acid-hydrolyzed and TEMPO-oxidized nanocellulose for reinforcing alginate fibers[J]. Bioresources,2017,12(4):8180-8198.
    [8] ZHANG H, SUN X, HUBBE M A, et al. Highly conductive carbon nanotubes and flexible cellulose nanofibers composite membranes with semi-interpenetrating networks structure[J]. Carbohydrate Polymers,2019,222:115013.
    [9] VINU MOHAN A M, VINOTH RAJENDRAN, RUPESH K MISHRA, et al. Recent advances and perspectives in sweat based wearable electrochemical sensors[J]. TrAC Trends in Analytical Chemistry,2020,131:116024.
    [10] SANJAYA D GUNAWARDHANA K R, NANDULA D WANASEKARA, ISHARA G DHARMASENA R D. Towards truly wearable systems: Optimizing and scaling up wearable triboelectric nanogenerators[J]. Science,2020,23(8):101360.
    [11] SOURI H, BHATTACHARYYA D. Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric[J]. Journal of Materials Chemistry C,2018,6:10524-10531.
    [12] NASIRI S, KHOSRAVANI M R. Progress and challenges in fabrication of wearable sensors for health monitoring[J]. Sensors and Actuators A Physical,2020,312:112105.
    [13] WANG Y, CANG S, YU H. A survey on wearable sensor modality centred human activity recognition in health care[J]. Expert Systems with Applications,2019,137:167-190.
    [14] ATALLA R H, VANDERHART D L. Native cellulose: A composite of two distinct crystalline forms[J]. Science,1984,223(4633):283-285.
    [15] SASRIMUANG S, CHUCHUEN O, ARTNASEAW A. Synthesis, characterization, and electrochemical properties of carbon nanotubes used as cathode materials for Al–air batteries from a renewable source of water hyacinth[J]. Green Processing and Synthesis,2020,9(1):340-348.
    [16] 姜大伟, 徐庆玲, 任彪彪, 等. Na+阻燃改性亚麻纤维及其对纤维性能的影响[J]. 精细化工, 2019, 36(9):1809-1815.

    JIANG Dawei, XU Qingling, REN Biaobiao, et al. Na+ flame retardant modified flax fiber and its effect on fiber properties[J]. Fine Chemical Engineering,2019,36(9):1809-1815(in Chinese).
    [17] 韩景泉, 王思伟, 岳一莹, 等. 静电纺定向纳米纤维素-碳纳米管/聚乙烯醇复合纤维导电膜及性能[J]. 复合材料学报, 2018, 35(9):2351-2361.

    HAN Jingquan, WANG Siwei, YUE Yiying, et al. Preparation and characterization of cellulose nanocrystal-carbon nanotube/polyvinyl alcohol composite conductive membranes with oriented fibers by electrospinning[J]. Acta Materiae Compositae Sinica,2018,35(9):2351-2361(in Chinese).
    [18] DANDY L O, OLIVEUX G, WOOD J, et al. Counting carbon fibres by electrical resistance measurement[J]. Composites: Part A,2015,68:276-281.
    [19] 张永翔, 孙晓刚, 庞志鹏, 等. 碳纳米管/纤维素纤维复合纸及其电磁屏蔽性能研究[J]. 化工新型材料, 2017, 45(9):71-73.

    ZHANG Yongxiang, SUN Xiaogang, PANG Zhipeng, et al. Preparation and electromagnetic shielding property of carbon nanotube-cellulose fiber composite paper[J]. New Chemical Materials,2017,45(9):71-73(in Chinese).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1076
  • HTML全文浏览量:  416
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-17
  • 录用日期:  2020-10-15
  • 网络出版日期:  2020-10-20
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回