留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水合氧化铁负载量对丙烯酸树脂基复合吸附剂的结构及除磷影响

孙健 徐兆郢 赵平歌 张格红 薛崇灏

孙健, 徐兆郢, 赵平歌, 等. 水合氧化铁负载量对丙烯酸树脂基复合吸附剂的结构及除磷影响[J]. 复合材料学报, 2021, 38(8): 2595-2604. doi: 10.13801/j.cnki.fhclxb.20201019.002
引用本文: 孙健, 徐兆郢, 赵平歌, 等. 水合氧化铁负载量对丙烯酸树脂基复合吸附剂的结构及除磷影响[J]. 复合材料学报, 2021, 38(8): 2595-2604. doi: 10.13801/j.cnki.fhclxb.20201019.002
SUN Jian, XU Zhaoying, ZHAO Pingge, et al. Effect of hydrated ferric oxide loadings on structure and phosphate adsorption of acrylic polymer-supported composite adsorbents[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2595-2604. doi: 10.13801/j.cnki.fhclxb.20201019.002
Citation: SUN Jian, XU Zhaoying, ZHAO Pingge, et al. Effect of hydrated ferric oxide loadings on structure and phosphate adsorption of acrylic polymer-supported composite adsorbents[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2595-2604. doi: 10.13801/j.cnki.fhclxb.20201019.002

水合氧化铁负载量对丙烯酸树脂基复合吸附剂的结构及除磷影响

doi: 10.13801/j.cnki.fhclxb.20201019.002
基金项目: 国家自然科学基金(51908439);陕西省教育厅专项科学研究计划项目(19JK0395);西安工业大学校长基金(XAGDXJJ18019)
详细信息
    通讯作者:

    孙健,博士,讲师,研究方向为污水处理、再生水回用 E-mail:201sun@163.com

  • 中图分类号: X703

Effect of hydrated ferric oxide loadings on structure and phosphate adsorption of acrylic polymer-supported composite adsorbents

  • 摘要: 为优化丙烯酸树脂基水合氧化铁(Hydrated ferric oxide,HFO)复合吸附剂的负载量,调节FeCl3浓度制备出5种复合吸附剂(HFO负载量分别为5.3wt%、8.6wt%、12.1wt%、14.9wt%和18.5wt%,以Fe质量分数计),分析其结构性能,并考察D213-HFO复合吸附剂对磷的吸附等温线、吸附动力学、pH和共存离子影响及洗脱效果。结果表明,复合吸附剂负载HFO颗粒为纳米无定型HFO,在直径方向呈U型分布。此外,随HFO负载量增加,磷吸附容量先升高后下降,负载量为14.9wt%的复合吸附剂吸附容量最大(19.04 mg·g−1)。复合吸附剂吸附磷在240 min达到平衡,更符合准一级动力学模型(R2>0.99)。磷吸附最佳pH为6~8,当SO42−≥600 mg·L−1树脂对磷无吸附效果,而负载HFO吸附磷不受影响。在连续4个吸附-洗脱周期内,5wt%的NaOH和5wt%的NaCl溶液对磷的洗脱率均接近100%。实验表明,复合吸附剂的吸附容量随HFO负载量增加先升高后下降,而结构性能、吸附平衡时间、pH适应范围、共存离子影响及洗脱效果无显著差异。

     

  • 图  1  树脂D213与D213-HFO复合吸附剂的切面SEM图像

    Figure  1.  SEM images of section of D213 and D213-HFO composite adsorbents((a1)-(f1)) ×150; (a2)-(f2) ×10 000)

    图  2  D213和D213-14.9HFO复合吸附剂的FTIR图谱

    Figure  2.  FTIR spectra of D213 and D213-14.9HFO composite adsorbents

    图  3  D213-HFO复合吸附剂的TEM图像和Fe元素径向分布图

    Figure  3.  TEM images and Fe radial distribution images of D213-HFO composite adsorbents

    图  4  D213-HFO复合吸附剂的XRD图谱

    Figure  4.  XRD spectra of D213-HFO composite adsorbents

    图  5  D213-HFO复合吸附剂对P的吸附等温线

    Figure  5.  Adsorption isotherms of P onto D213-HFO composite adsorbents

    图  6  不同磷浓度下D213-HFO复合吸附剂的固液分配系数Kd

    Figure  6.  Distribution coefficients Kd of D213-HFO composite adsorbents at different phosphate levles

    图  7  D213和D213-HFO复合吸附剂的吸附动力学曲线

    Figure  7.  Adsorption kinetic curves of D213 and D213-HFO composite adsorbents

    图  8  pH对P在D213-HFO复合吸附剂上吸附效果的影响

    Figure  8.  Effect of pH on P adsorption by D213-HFO composite adsorbents

    图  9  SO42−对D213和D213-HFO复合吸附剂吸附P效果的影响

    Figure  9.  Effect of sulfate on P adsorption by D213 and D213-HFO composite adsorbents

    图  10  连续4个周期内D213-HFO复合吸附剂的 P吸附容量

    Figure  10.  Adsorption capacity of P by D213-HFO composite adsorbents during 4 continuous cycles

    图  11  连续4个周期内D213-HFO复合吸附剂的P洗脱率

    Figure  11.  Regeneration efficiency of P by D213-HFO composite adsorbents during 4 continuous cycles

    表  1  不同FeCl3浓度制备的复合吸附剂

    Table  1.   Composite adsorbents prepared with various FeCl3 concentrations

    FeCl3 concentration/(mol·L−1)HFO loading/wt%Adsorbent
    0.35 5.3 D213-5.3HFO
    0.5 8.6 D213-8.6HFO
    1.0 12.1 D213-12.1HFO
    1.3 14.9 D213-14.9HFO
    2.5 18.5 D213-18.5HFO
    Note: HFO—Hydrated ferrous oxide.
    下载: 导出CSV

    表  2  D213和D213-14.9HFO复合吸附剂的孔特征参数

    Table  2.   Porous characteristics of D213 and D213-14.9HFO composite adsorbents

    AdsorbentD213D213-14.9HFO
    Surface area/(m2·g−1) 4.46 6.51
    Pore volume/(cm3·g−1) 0.011 0.008
    Mean pore size/nm 9.43 7.67
    下载: 导出CSV

    表  3  D213-HFO复合吸附剂的Freundlich模型和Langmuir模型拟合参数

    Table  3.   Isothermal adsorption model fitting parameters of Langmuir and Freundlich model by D213-HFO composite adsorbents

    AdsorbentsLangmuir modelFreundlich model
    qm/(mg·g−1)b/(L·mg−1)R2Kf/(mg1−1/n·L1/n·g−1)nR2
    D213-5.3HFO 8.98 0.10 0.973 1.29 2.30 0.982
    D213-8.6HFO 9.20 0.23 0.964 2.24 2.49 0.972
    D213-12.1HFO 15.80 0.19 0.946 3.40 2.18 0.976
    D213-14.9HFO 19.04 0.16 0.964 3.76 2.33 0.973
    D213-18.5HFO 18.55 0.17 0.941 3.74 2.68 0.964
    Notes: qm―Maximum adsorption capacity; b, Kf and n―Isotherm constants.
    下载: 导出CSV

    表  4  D213和D213-HFO复合吸附剂的吸附动力学拟合参数

    Table  4.   Kinetic fitting parameters of D213 and D213-HFO composite adsorbents

    AdsorbentPseudo-first-orderPseudo-second-orderIntra-particle diffusion
    qe/(mg·g−1)k1/min−1R2qe/(mg·g−1)k2/(g·mg−1·min−1)R2Ckd/(mg·g−1·min−1/2)R2
    D213 15.23 0.028 0.998 17.32 20.9 0.978 2.816 0.842 0.791
    D213-5.3HFO 16.92 0.023 0.999 20.26 11.9 0.976 2.248 0.975 0.840
    D213-8.6HFO 17.84 0.021 0.999 21.60 10.2 0.979 2.119 1.037 0.853
    D213-12.1HFO 19.66 0.017 0.999 24.79 6.54 0.988 1.507 1.163 0.896
    D213-14.9HFO 19.65 0.018 0.999 24.49 7.07 0.989 1.719 1.155 0.892
    D213-18.5HFO 19.61 0.015 0.999 25.47 5.06 0.993 0.980 1.161 0.925
    Notes: k1―Pseudo-first-order kinetic constant; k2―Pseudo-second-order kinetic constant; qe―Phosphate adsorption capacity in equilibrium; kd―Intra-particle diffusion rate constant; C―Reaction constant.
    下载: 导出CSV
  • [1] CONLEY D J, PAERL H W, HOWARTH R W, et al. Controlling eutrophication: Nitrogen and phosphorus[J]. Science,2009,323(5917):1014-1015. doi: 10.1126/science.1167755
    [2] AWUAL M R. Efficient phosphate removal from water for controlling eutrophication using novel composite adsorbent[J]. Journal of Cleaner Production,2019,228:1311-1319. doi: 10.1016/j.jclepro.2019.04.325
    [3] ZHANG Z, WANG Y, LESLIE G L, et al. Effect of ferric and ferrous iron addition on phosphorus removal and fouling in submerged membrane bioreactors[J]. Water Research,2015,69:210-222. doi: 10.1016/j.watres.2014.11.011
    [4] MAHARDIKA D, PARK H S, CHOO K H. Ferrihydrite-impregnated granular activated carbon (FH@GAC) for efficient phosphorus removal from wastewater secondary effluent[J]. Chemosphere,2018,207:527-533. doi: 10.1016/j.chemosphere.2018.05.124
    [5] XIA W, XU L, YU L, et al. Conversion of municipal wastewater-derived waste to an adsorbent for phosphorus recovery from secondary effluent[J]. Science of The Total Environment,2020,705:135959. doi: 10.1016/j.scitotenv.2019.135959
    [6] LOGANATHAN P, VIGNESWARAN S, KANDASAMY J, et al. Removal and recovery of phosphate from water using sorption[J]. Critical Reviews in Environmental Science and Technology,2014,44(8):847-907. doi: 10.1080/10643389.2012.741311
    [7] ZHANG H, ELSKENS M, CHEN G, et al. Influence of seawater ions on phosphate adsorption at the surface of hydrous ferric oxide (HFO)[J]. Science of The Total Environment,2020,721:137826. doi: 10.1016/j.scitotenv.2020.137826
    [8] LIN J, ZHAO Y, ZHAN Y, et al. Influence of coexisting calcium and magnesium ions on phosphate adsorption onto hydrous iron oxide[J]. Environmental Science and Pollution Research,2020,27(10):11303-11319. doi: 10.1007/s11356-020-07676-w
    [9] 董浩, 花铭. 树脂基纳米复合材料吸附水中As(III)的性能比较研究[J]. 离子交换与吸附, 2017, 33(5):385-394.

    DONG Hao, HUA Ming. Comparative study of arsenite removal from water by polymer-supported hydrated metallic oxides[J]. Ion Exchange and Adsorption,2017,33(5):385-394(in Chinese).
    [10] SURESH K P, PROT T, KORVING L, et al. Effect of pore size distribution on iron oxide coated granular activated carbons for phosphate adsorption-Importance of mesopores[J]. Chemical Engineering Journal,2017,326:231-239. doi: 10.1016/j.cej.2017.05.147
    [11] WANG Z, LIN Y, WU D, et al. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture[J]. Chemosphere,2016,144:1290-1298. doi: 10.1016/j.chemosphere.2015.10.015
    [12] MUHAMMAD A, SOARES A, JEFFERSON B. The impact of background wastewater constituents on the selectivity and capacity of a hybrid ion exchange resin for phosphorus removal from wastewater[J]. Chemosphere,2019,224:494-501. doi: 10.1016/j.chemosphere.2019.01.085
    [13] 赵继旭, 胡建龙, 邵立南, 等. HCl浓度对水合氧化铁复合吸附剂磷吸附效能的影响[J]. 复合材料学报, 2021, 38(4):1139-1146.

    ZHAO Jixu, HU Jianlong, SHAO Li’nan, et al. Effect of HCl concentration on phosphate adsorption behavior of hydrated ferrous oxide composite adsorbents[J]. Acta Materiae Compositae Sinica,2021,38(4):1139-1146(in Chinese).
    [14] 刘艳, 高洋, 赵昕, 等. 凝胶型树脂载纳米水合氧化铁复合材料的制备与除As(V)特性[J]. 高分子学报, 2018(7):939-948.

    LIU Yan, GAO Yang, ZHAO Xin, et al. A gel resin-supported nano-hydrated iron oxide for arsenate sorption from water[J]. Acta Polymerica Sinica,2018(7):939-948(in Chinese).
    [15] DENG Y, ZHANG Q, ZHANG Q, et al. Arsenate removal from underground water by polystyrene-confined hydrated ferric oxide (HFO) nanoparticles: Effect of humic acid[J]. Environmental Science and Pollution Research,2020,27(7):6861-6871. doi: 10.1007/s11356-019-07282-5
    [16] PAN B, WU J, PAN B, et al. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents[J]. Water Research,2009,43(17):4421-4429. doi: 10.1016/j.watres.2009.06.055
    [17] BLANEY L M, CINAR S, SENGUPTA A K. Hybrid anion exchanger for trace phosphate removal from water and wastewater[J]. Water Research,2007,41(7):1603-1613. doi: 10.1016/j.watres.2007.01.008
    [18] 曹顺安, 杨苑霖, 郑观文. 离子交换树脂有机物污染处理及预防措施[J]. 水处理技术, 2017, 43(2):14-17.

    CAO Shun’an, YANG Yuanlin, ZHENG Guanwen. Treatment and precaution measures of the ion exchange resin polluted by organic substances[J]. Technology of Water Treatment,2017,43(2):14-17(in Chinese).
    [19] BERIL G Z, KAYA Y, VERGILI I, et al. Capacity loss in an organically fouled anion exchanger[J]. Desalination,2006,189(1-3):303-307. doi: 10.1016/j.desal.2005.07.012
    [20] 王钇, 李颖瑜, 王津南, 等. 阴离子交换树脂骨架结构对吸附单宁酸与五倍子酸的影响[J]. 离子交换与吸附, 2016, 32(1):1-13.

    WANG Yi, LI Yingyu, WANG Jinnan, et al. Effect of skeleton structure of anion exchange resin on adsorption performance of tannic acid and gallic acid[J]. Ion Exchange and Adsorption,2016,32(1):1-13(in Chinese).
    [21] SHUANG C, WANG J, LI H, et al. Effect of the chemical structure of anion exchange resin on the adsorption of humic acid: Behavior and mechanism[J]. Journal of Colloid and Interface Science,2015,437:163-169. doi: 10.1016/j.jcis.2014.09.011
    [22] 中国石油和化学工业联合会. 离子交换树脂预处理方法: GB/T 5476—2013[S]. 北京: 中国标准出版社, 2013.

    China Petroleum and Chemical Industry Federation. Methods of pretreating ion exchange resin: GB/T 5476—2013[S]. Beijing: China Standards Press, 2013(in Chinese).
    [23] 国家环境保护局标准处. 钼酸铵分光光度法: GB/T 11893—1989[S]. 北京: 中国标准出版社, 1989.

    Standards Division of State Environmental Protection Administration. Ammonium molybdate spectrophotometric method: GB/T 11893—1989[S]. Beijing: China Standards Press, 1989(in Chinese).
    [24] SU Y, CUI H, LI Q, et al. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles[J]. Water Research,2013,47(14):5018-5026. doi: 10.1016/j.watres.2013.05.044
    [25] ALSHEHRI S M, NAUSHAD M, AHAMAD T, et al. Synthesis, characterization of curcumin based ecofriendly antimicrobial bio-adsorbent for the removal of phenol from aqueous medium[J]. Chemical Engineering Journal,2014,254:181-189. doi: 10.1016/j.cej.2014.05.100
    [26] GONG C, CHEN D, JIAO X, et al. Continuous hollow α-Fe2O3 and α-Fe fibers prepared by the sol-gel method[J]. Journal of Materials Chemistry,2002,12(6):1844-1847. doi: 10.1039/b201243j
    [27] LI S, YANG Q, ZHONG Y, et al. Adsorptive bromate removal from aqueous solution by commercial strongly basic resin impregnated with hydrated ferric oxide (hfo): Kinetics and equilibrium studies[J]. Journal of Chemical & Engineering Data,2016,61(3):1305-1312.
    [28] ZHOU K, WU B, SU L, et al. Enhanced phosphate removal using nanostructured hydrated ferric-zirconium binary oxide confined in a polymeric anion exchanger[J]. Chemical Engineering Journal,2018,345:640-647. doi: 10.1016/j.cej.2018.01.091
    [29] WANG J, ZHANG S, PAN B, et al. Hydrous ferric oxide-resin nanocomposites of tunable structure for arsenite removal: Effect of the host pore structure[J]. Journal of Hazardous Materials,2011,198:241-246. doi: 10.1016/j.jhazmat.2011.10.036
    [30] KARIM A H, JALIL A A, TRIWAHYONO S, et al. Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue[J]. Journal of Colloid and Interface Science,2012,386(1):307-314. doi: 10.1016/j.jcis.2012.07.043
    [31] ZENG H, FISHER B, GIAMMAR D E. Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent[J]. Environmental Science & Technology,2008,42(1):147-152.
    [32] 许建红, 高乃云, 唐玉霖, 等. 浅析水合氧化铁的研究进展[J]. 水处理技术, 2011, 37(8):22-25.

    XU Jianhong, GAO Naiyun, TANG Yulin, et al. Analysis of hydrous ferric oxide research[J]. Technology of Water Treatment,2011,37(8):22-25(in Chinese).
    [33] KHARE N, HESTERBERG D, MARTIN J D. XANES investigation of phosphate sorption in single and binary systems of iron and aluminum oxide minerals[J]. Environmental Science & Technology,2005,39(7):2152-2160.
    [34] LEFEVRE G. In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides[J]. Advances in Colloid and Interface Science,2004,107(2):109-123.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  786
  • HTML全文浏览量:  190
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 录用日期:  2020-10-12
  • 网络出版日期:  2020-10-19
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回