留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MT300/KH420碳纤维/聚酰亚胺树脂复合材料层合圆柱壳高温承载性能

高艺航 王世勋 石玉红 雷勇军 张大鹏

高艺航, 王世勋, 石玉红, 等. MT300/KH420碳纤维/聚酰亚胺树脂复合材料层合圆柱壳高温承载性能[J]. 复合材料学报, 2021, 38(7): 2172-2183. doi: 10.13801/j.cnki.fhclxb.20201017.001
引用本文: 高艺航, 王世勋, 石玉红, 等. MT300/KH420碳纤维/聚酰亚胺树脂复合材料层合圆柱壳高温承载性能[J]. 复合材料学报, 2021, 38(7): 2172-2183. doi: 10.13801/j.cnki.fhclxb.20201017.001
GAO Yihang, WANG Shixun, SHI Yuhong, et al. Load-bearing capability of laminated MT300/KH420 carbon fiber/polyimide resin composite cylindrical shell at high temperatures[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2172-2183. doi: 10.13801/j.cnki.fhclxb.20201017.001
Citation: GAO Yihang, WANG Shixun, SHI Yuhong, et al. Load-bearing capability of laminated MT300/KH420 carbon fiber/polyimide resin composite cylindrical shell at high temperatures[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2172-2183. doi: 10.13801/j.cnki.fhclxb.20201017.001

MT300/KH420碳纤维/聚酰亚胺树脂复合材料层合圆柱壳高温承载性能

doi: 10.13801/j.cnki.fhclxb.20201017.001
基金项目: 国家自然科学基金(11902348)
详细信息
    通讯作者:

    雷勇军,教授,博士生导师,研究方向为计算固体力学理论及应用 E-mail:leiyj108@nudt.edu.cn

  • 中图分类号: TB332

Load-bearing capability of laminated MT300/KH420 carbon fiber/polyimide resin composite cylindrical shell at high temperatures

  • 摘要: 基于Donnell-Mushtali近似理论及热弹性理论,考虑结构热变形和材料高温性能衰减等温度影响因素,对MT300/KH420碳纤维/聚酰亚胺树脂复合材料圆柱壳在常温、420℃及周向210~420℃不均匀温度场等热载工况下的承载性能进行了理论分析。并引入一阶屈曲模态缺陷作为几何初始扰动,利用ABAQUS,采用非线性显式动力学方法完成对MT300/KH420复合材料圆柱壳在以上热载工况下的轴压稳定性有限元仿真计算,计算结果与理论分析较为一致。设计并开展MT300/KH420复合材料圆柱壳力-热载荷联合轴压试验,获得圆柱壳在以上热载工况下的破坏载荷和破坏模式。研究表明:高温工况下,力学性能衰减和温场不均匀引起的结构热变形是影响MT300/KH420复合材料圆柱壳轴向失稳载荷的主要因素。

     

  • 图  1  MT300/KH420碳纤维/聚酰亚胺树脂复合材料圆柱壳示意图

    Figure  1.  Schematic of MT300/KH420 carbon fiber/polyimide resin composite cylindrical shell

    图  2  温区划分

    Figure  2.  Division of temperature regions

    图  3  MT300/KH420复合材料圆柱壳轴压稳定性理论分析结果比较

    Figure  3.  Comparison of theoretical analysis results of axial stability characteristics of MT300/KH420 composite cylindrical shell

    图  4  MT300/KH420复合材料圆柱壳有限元模型载荷和边界条件

    Figure  4.  Load and boundary in FEM model of MT300/KH420 composite cylindrical shell

    图  5  MT300/KH420复合材料圆柱壳轴压稳定性非线性显式动力学有限元分析结果比较

    Figure  5.  Comparison of FEM analysis results of axial stability characteristics of MT300/KH420 composite cylindrical shell by non-linear explicit dynamic method

    图  6  MT300/KH420复合材料圆柱壳中心约束参考点载荷-位移曲线

    Figure  6.  Load-displacement curves of center constrained reference point of MT300/KH420 composite cylindrical shell

    图  7  不同温度下轴压加载MT300/KH420复合材料圆柱壳的变形

    Figure  7.  Deformation of MT300/KH420 composite cylindrical shell caused by axial load at different temperatures

    图  8  室温和高温下轴压破坏试验加载方式

    Figure  8.  Loading method of axial compress destructive test at ambient and high temperatures

    图  9  各载荷工况下MT300/KH420复合材料圆柱壳轴压破坏载荷比较

    Figure  9.  Comparison of axial failure loads of MT300/KH420 composite cylindrical shell at different load conditions

    图  10  室温MT300/KH420复合材料圆柱壳轴压破坏形貌

    Figure  10.  Fracture appearance caused by axial load of MT300/KH420 composite cylindrical shell at ambient temperature

    图  11  420℃均匀温场MT300/KH420复合材料圆柱壳轴压破坏形貌

    Figure  11.  Fracture appearance caused by axial load of MT300/KH420 composite cylindrical shell at uniform thermal field of 420℃

    图  12  210~420℃非均匀温场MT300/KH420复合材料学报圆柱壳轴压破坏形貌

    Figure  12.  Fracture appearance caused by axial load of MT300/KH420 composite cylindrical shell at non-uniform thermal field of 210–420℃

    表  1  材料性能参数

    Table  1.   Material property parameters

    Temperature/℃Engineering constantExpansion coefficient
    ${E_x}$/MPa${E_y}$/MPa${E_{\rm{s}}}$/MPa${\nu _x}$${\alpha _x}$/10−7${\alpha _y}$/10−5
    Ambient temperature 110700 9120 3700 0.32 5.2 3.33
    210 99630/90% 8208/90% 2960/80% 0.32 5.2 3.33
    420 88560/80% 7296/80% 2220/60% 0.32 5.2 3.33
    Notes: 55350/50% means ${E_x}$=55350 MPa,which is 50% of the value at ambient temperature; ${E_x}$, ${E_y}$, ${E_{\rm{s}}}$—Modulus in longitudinal, transverse and shear directions, respectively; ${\nu _x}$—Poisson’s ratio; ${\alpha _x}$, ${\alpha _y}$—Coefficients of thermal expansion in longitudinal and transverse directions, respectively.
    下载: 导出CSV

    表  2  MT300/KH420复合材料圆柱壳轴压稳定性理论分析结果

    Table  2.   Theoretical analysis results of axial stability characteristics of MT300/KH420 composite cylindrical shell

    Material’s degradationAmbient temperature420℃210–420℃
    Without considering
    material’s degradation
    Buckling load/kN 651.12 651.20 551.70
    Change rate/% 0.01 −15.3
    Considering material’s degradation Buckling load/kN 651.12 507.80 437.06
    Change rate/% −22.0 −32.9
    下载: 导出CSV

    表  3  MT300/KH420复合材料圆柱壳轴压稳定性非线性显式动力学分析结果

    Table  3.   FEM analysis results of axial stability characteristics of MT300/KH420 composite cylindrical shell by non-linear explicit dynamic method

    Material’s degradationAmbient temperature420℃210–420℃
    Without considering
    material’s degradation
    Buckling load/kN 554.88 523.15 467.47
    Change rate/% −5.7 −15.7
    Considering material’s degradation Buckling load/kN 554.88 431.26 375.26
    Change rate/% −22.3 −32.4
    下载: 导出CSV

    表  4  各载荷工况下MT300/KH420复合材料圆柱壳轴压破坏载荷

    Table  4.   Axial failure loads of MT300/KH420 composite cylindrical shell at different load conditions

    Buckling loadAmbient temperature420℃210–420℃
    Load/kN 394.1 332.2 92.7
    Change rate/% −15.7 −76.5
    下载: 导出CSV

    表  5  MT300/KH420复合材料圆柱壳轴压稳定性理论及有限元分析与试验结果对比

    Table  5.   Results comparison of analytical methods, FEM analysis and experimental study of axial stability characteristics of MT300/KH420 composite cylindrical shell

    Analysis methodAmbient temperature420℃210–420℃
    Theoretical analysis Buckling load/kN 651.12 507.80 437.06
    Change rate/% −22.0 −32.9
    FEM analysis Buckling load/kN 554.88 431.26 375.26
    Change rate/% −22.3 −32.4
    Experimental study Buckling load/kN 394.1 332.2 92.7
    Change rate/% −15.7 −76.5
    下载: 导出CSV
  • [1] GANAPATHI M, ANIRUDH B, ADITYA N D, et al. Thermal buckling behaviour of variable stiffness laminated composite plates[J]. Materials Today Communications,2018,16(5):142-151.
    [2] 沈惠申. 湿热环境中复合材料层合圆柱薄壳的屈曲和后屈曲[J]. 应用数学和力学, 2020, 22(3):228-238.

    SHEN H S. Buckling and postbuckling of laminated thin cylindrical shells under hygrothermal environments[J]. Applied Mathematics and Mechanics,2020,22(3):228-238(in Chinese).
    [3] BIRMAN V, BERT C W. Buckling and post-buckling of composite plates and shells subjected to elevated temperature[J]. Journal of applied mechanics,1993,60(2):514-519. doi: 10.1115/1.2900823
    [4] ESLAMI M R. Buckling of composite cylindrical shells under mechanical and thermal loads[J]. Journal of Thermal Stresses,2010,33(11):527-545.
    [5] MA S F, WILCOX M W. Thermal buckling of antisymmetric angle-ply laminated cylindrical shells[J]. Composites Engineering,1991,1(3):183-192. doi: 10.1016/0961-9526(91)90018-N
    [6] HOUDAYFA O, ABDELOUAHAB T, ADEL B, et al. Thermal buckling behavior of laminated composite plates: A finite-element study[J]. Frontiers of Mechanical Engineering,2014,9(1):41-49. doi: 10.1007/s11465-014-0284-z
    [7] SHEN H S. Boundary layer theory for the buckling and postbuckling of an anisotropic laminated cylindrical shell Part Ⅰ: Prediction under axial compression[J]. Composite Structures,2008,82(3):346-361. doi: 10.1016/j.compstruct.2007.01.024
    [8] SHEN H S. Boundary layer theory for the buckling and postbuckling of an anisotropic laminated cylindrical shell Part Ⅱ: Prediction under external pressure[J]. Composite Structures,2008,82(3):362-370. doi: 10.1016/j.compstruct.2007.01.018
    [9] SHEN H S. Boundary layer theory for the buckling and postbuckling of an anisotropic laminated cylindrical shell Part Ⅲ: Prediction under torsion[J]. Composite Structures,2008,82(3):371-381. doi: 10.1016/j.compstruct.2007.01.013
    [10] SHEN H S. Thermal postbuckling behavior of anisotropic laminated cylindrical shells with temperature-dependent properties[J]. AIAA Journal,2008,46(1):185-93. doi: 10.2514/1.31192
    [11] SHEN H S, XIANG Y. Thermal buckling and postbuckling behavior of FG-GRC laminated cylindrical shells with temperature-dependent material properties[J]. Meccania,2019,54:283-297. doi: 10.1007/s11012-019-00945-0
    [12] PATEL B P. Thermal postbuckling characteristics of laminated conical shells with temperature-dependent materials properties[J]. AIAA Journal,2005,43(6):1380-1388. doi: 10.2514/1.13259
    [13] THANGARATNAM R K. Thermal buckling of laminated composite shells[J]. AIAA Journal,1990,28(5):859-860. doi: 10.2514/3.25130
    [14] 李钟海, 程小全, 汪源龙, 等. 复合材料柱面壳压缩性能分析[J]. 复合材料学报, 2011, 28(1):206-210.

    LI Z H, CHENG X Q, WANG Y L, et al. Compressive properties analysis of composite cylindrical shells[J]. Acta Materiae Compositae Sinica,2011,28(1):206-210(in Chinese).
    [15] TRABELSI S, FRIKHA A, ZGHAL S, et al. A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells[J]. Engineering Structures,2019,178:444-459. doi: 10.1016/j.engstruct.2018.10.047
    [16] ROSS B, HOFF N J, HORTON W H. The buckling behavior of uniformly heated thin circular cylindrical shells[J]. Experimental Mechanics, 1966, 6: 529–537.
    [17] XU J F, ZHAO Q, QIAO P Z. A critical review on buckling and post-buckling analysis of composite structures[J]. Frontiers in Aerospace Engineering,2013,2(3):157-168.
    [18] 张志民. 复合材料结构力学[M]. 北京: 北京航空航天大学出版社, 1993.

    ZHANG Z M. Structural mechanics of composite material[M]. Beijing: Beihang University Press, 1993(in Chinese).
    [19] 张骏华. 复合材料结构设计指南[M]. 北京: 宇航出版社, 1999.

    ZHANG J H. Guide for structural design of composite materials[M]. Beijing: China Astronautic Publishing House, 1999(in Chinese).
    [20] 高艺航, 石玉红, 王鲲鹏, 等. 碳纤维增强聚酰亚胺树脂基复合材料MT300/KH420高温力学性能Ⅰ: 拉伸和层间剪切性能[J]. 复合材料学报, 2016, 33(6):1206-1213.

    GAO Y H, SHI Y H, WANG K P, et al. High-temperature mechanical properties of carbon fiber reinforced polyimide resin matrix composites MT300/KH420 Ⅰ: Tensile and interlaminar shear properties[J]. Acta Materiae Compositae Sinica,2016,33(6):1206-1213(in Chinese).
    [21] 高艺航, 石玉红, 王鲲鹏, 等. 聚酰亚胺树脂基MT300/KH420复合材料高温力学性能Ⅱ: 弯曲性能[J]. 复合材料学报, 2016, 33(12):2699-2705.

    GAO Y H, SHI Y H, Wang K P, et al. High-temperature mechanical properties of polyimide resin matrix MT300/KH420 composites Ⅱ: Flexural properties[J]. Acta Materiae Compositae Sinica,2016,33(12):2699-2705(in Chinese).
    [22] 杨士勇, 范琳, 陈建升, 等. 高性能聚酰亚胺材料的研究进展[J]. 热固性树脂, 2008, 23(4):32-35.

    YANG S Y, FAN L, CHEN J S, et al. Research development of polyaimde with high performance[J]. Thermosetting Resin,2008,23(4):32-35(in Chinese).
    [23] SCHULTZ M R, NEMETH M P. Buckling imperfection sensitivity of axially compressed orthotropic cylinders[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Florida: AIAA, 2010.
    [24] 徐荣章, 关志东, 刘璐, 等. 屈曲模态对含缺陷复材加筋板后屈曲的影响[J]. 北京航空航天大学学报, 2014, 40(9):1299-1304.

    XU R Z, GUAN Z D, LIU L, et al. Effect of buckling mode on performance of post-buckled composite stringer-stiffened panels with debond[J]. Journal of Beijing University of Aeronautics and Astronautics,2014,40(9):1299-1304(in Chinese).
    [25] 郝鹏, 王博, 李刚, 等. 基于缺陷敏感性分析的加筋圆柱壳结构设计[J]. 应用力学学报, 2013, 30(3):344-349. doi: 10.11776/cjam.30.03.B080

    HAO P, WANG B, LI G, et al. Structural design of stiffened shells based on imperfectionsensitivity analysis[J]. Chinese Journal of Applied Mechanics,2013,30(3):344-349(in Chinese). doi: 10.11776/cjam.30.03.B080
    [26] 殷毓基, 梁珂, 孙秦, 等. 基于非线性有限元降阶方法的网格加筋筒壳结构屈曲承载特性研究[J]. 宇航总体技术, 2019, 3(1):17-22.

    YIN Y J, LIANG K, SUN Q, et al. Buckling load-carrying capability analysis of grid-stiffened cylinders using a nonlinear finite element reduced-order method[J]. Astronautical Systems Engineering Technology,2019,3(1):17-22(in Chinese).
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  1198
  • HTML全文浏览量:  328
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-03
  • 录用日期:  2020-09-29
  • 网络出版日期:  2020-10-19
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回