留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于表面改性的国产T800碳纤维/高韧性环氧树脂复合材料胶接性能

翟全胜 苗春卉 崔海超 张晨乾 叶宏军

翟全胜, 苗春卉, 崔海超, 等. 基于表面改性的国产T800碳纤维/高韧性环氧树脂复合材料胶接性能[J]. 复合材料学报, 2021, 38(7): 2162-2171. doi: 10.13801/j.cnki.fhclxb.20201016.002
引用本文: 翟全胜, 苗春卉, 崔海超, 等. 基于表面改性的国产T800碳纤维/高韧性环氧树脂复合材料胶接性能[J]. 复合材料学报, 2021, 38(7): 2162-2171. doi: 10.13801/j.cnki.fhclxb.20201016.002
ZHAI Quansheng, MIAO Chunhui, CUI Haichao, et al. Bonding performance of domestic T800 carbon fiber/high toughness epoxy composite based on surface modification[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2162-2171. doi: 10.13801/j.cnki.fhclxb.20201016.002
Citation: ZHAI Quansheng, MIAO Chunhui, CUI Haichao, et al. Bonding performance of domestic T800 carbon fiber/high toughness epoxy composite based on surface modification[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2162-2171. doi: 10.13801/j.cnki.fhclxb.20201016.002

基于表面改性的国产T800碳纤维/高韧性环氧树脂复合材料胶接性能

doi: 10.13801/j.cnki.fhclxb.20201016.002
详细信息
    通讯作者:

    翟全胜,高级工程师,研究方向为聚合物基复合材料成型 E-mail:zqs_6564@126.com

  • 中图分类号: TQ050.4+3

Bonding performance of domestic T800 carbon fiber/high toughness epoxy composite based on surface modification

  • 摘要: 本文通过打磨、喷砂、等离子处理方法对国产T800碳纤维/高韧性环氧树脂复合材料的待胶接面进行改性,分别制备了J-116B胶膜和J-375胶膜的浮辊剥离性能及拉伸剪切性能试验件。测试了不同处理条件下J-116B胶膜和J-375胶膜的剥离和剪切性能。采用SEM对老化前后、未经刻蚀和刻蚀后的剥离试样形貌进行观察。采用接触角测试仪测试了不同表面处理方法对国产T800碳纤维/高韧性环氧树脂复合材料胶接面润湿性的影响,并采用XPS光电子能谱分析仪对等离子处理前后的国产T800碳纤维/高韧性环氧树脂复合材料胶接面表面理化性能进行研究。结果表明:尽管J-375胶膜的室温剥离性能不如J-116B胶膜,但J-375胶膜具有更好的湿热老化性能。等离子处理后的国产T800碳纤维/高韧性环氧树脂复合材料的破坏模式由黏附破坏为主转变为内聚破坏为主,因此使两种胶膜的拉剪和剥离性能均有明显提高。这是由于等离子体处理能够重组复合材料表面的分子链,在胶接表面形成新的活性基团。

     

  • 图  1  浮辊剥离实验示意图

    Figure  1.  Schematic diagram of floating roll peeling experiment

    图  2  拉伸剪切实验示意图

    Figure  2.  Schematic diagram of tensile shear experiment

    图  3  不同表面处理方式国产T800碳纤维/高韧性环氧树脂复合材料室温剥离性能对比

    Figure  3.  Comparison of room temperature peeling performance of domestic T800 carbon fiber/high toughness epoxy composites with different surface treatments

    图  4  不同表面处理方式国产T800碳纤维/高韧性环氧树脂复合材料室温拉伸和剪切性能对比

    Figure  4.  Comparison of tensile and shear properties of domestic T800 carbon fiber/high toughness epoxy composites with different surface treatment methods at room temperature

    图  5  不同表面处理方式国产T800碳纤维/高韧性环氧树脂复合材料湿热老化处理后剥离性能对比

    Figure  5.  Comparison of peeling performance of domestic T800 carbon fiber/high toughness epoxy composites with different surface treatment methods after damp heat aging treatment

    图  6  不同表面处理方式国产T800碳纤维/高韧性环氧树脂复合材料湿热老化处理后拉伸和剪切性能对比

    Figure  6.  Comparison of tensile and shear properties of domestic T800 carbon fiber/high toughness epoxy composites with different surface treatments after damp heat aging treatment

    图  7  国产T800碳纤维/高韧性环氧树脂复合材料浮辊剥离断面的微观形貌

    Figure  7.  Micro-morphologies of floating roller stripped fracture-section of domestic T800 carbon fiber/high toughness epoxy composites

    图  8  J-116B和J-375剥离的国产T800碳纤维/高韧性环氧树脂复合材料刻蚀后表面的微观形貌

    Figure  8.  Surface micro-morphologies of J-116B and J-375 stripped domestic T800 carbon fiber/high toughness epoxy composites after etching

    图  9  不同方式表面处理的国产T800碳纤维/高韧性环氧树脂复合材料板表面接触角

    Figure  9.  Surface contact angles of domestic T800 carbon fiber/high toughness epoxy composite boards with different surface treatments

    图  10  等离子处理前后国产T800碳纤维/高韧性环氧树脂复合材料板表面O1s的XPS图谱

    Figure  10.  XPS spectra of O1s of domestic T800 carbon fiber/high toughness epoxy composite boards before and after plasma treatment

    图  11  等离子处理前后国产T800碳纤维/高韧性环氧树脂复合材料板表面的基团变化

    Figure  11.  Group changes on surface of domestic T800 carbon fiber/high toughness epoxy composite board before and after plasma treatment

    表  1  浮辊剥离/拉伸剪切实验矩阵

    Table  1.   Experimental matrix of floating roller peeling/stretching shear

    Sample No.Film typeGrindingSand blastingPlasma treatmentAging treatment
    SY-116B-1 J-116B Yes No No No
    SY-116B-2 J-116B Yes No No Yes
    SY-116B-3 J-116B No Yes No No
    SY-116B-4 J-116B No Yes No Yes
    SY-116B-5 J-116B No Yes Yes No
    SY-116B-6 J-116B No Yes Yes Yes
    SY-375-1 J-375 Yes No No No
    SY-375-2 J-375 Yes No No Yes
    SY-375-3 J-375 No Yes No No
    SY-375-4 J-375 No Yes No Yes
    SY-375-5 J-375 No Yes Yes No
    SY-375-6 J-375 No Yes Yes Yes
    下载: 导出CSV

    表  2  喷砂处理工艺参数

    Table  2.   Process parameters of sand blasting

    No.ItemNominal parameter value
    1 Jet pressure 0.02 MPa
    2 Brown steel grit size 80#
    3 Distance 20–30 mm
    4 Speed 5 m/min
    下载: 导出CSV

    表  3  等离子体处理工艺参数

    Table  3.   Process parameters of plasma treatment

    No.ItemNominal parameter value
    1 Output power 800 W
    2 Ionizing medium Air
    3 Nozzle-sample distance 100 mm
    4 Speed 5 m/min
    5 Pressure 0.1 MPa
    下载: 导出CSV

    表  4  湿热老化后国产T800碳纤维/高韧性环氧树脂复合材料的性能保持率

    Table  4.   Performance retention rate of domestic T800 carbon fiber/high toughness epoxy composites after damp heat aging

    Sample
    No.
    Performance retention of
    float roll peeling/%
    Performance retention
    of stretch shear/%
    SY-116B-1
    SY-116B-2
    88.4 25.3
    SY-116B-3
    SY-116B-4
    100.5 16.9
    SY-116B-5
    SY-116B-6
    97.2 15.5
    SY-375-1
    SY-375-2
    143.4 32.3
    SY-375-3
    SY-375-4
    136.3 33.4
    SY-375-5
    SY-375-6
    141.8 52.1
    下载: 导出CSV

    表  5  经不同表面处理的国产T800碳纤维/高韧性环氧树脂复合材料板接触角对比

    Table  5.   Comparison of contact angles of domestic T800 carbon fiber/high toughness epoxy composite boards with different surface treatments

    Surface treatmentContact angle/(°)
    Grinding 89.5
    Sand blasting 74.5
    Sand blasting+plasma treatment 0
    下载: 导出CSV
  • [1] 欧秋仁, 嵇培军, 肖军, 等. 国产T800碳纤维用氰酸酯树脂开发及其复合材料性能[J]. 材料工程, 2019, 47(8):125-131. doi: 10.11868/j.issn.1001-4381.2018.000289

    OU Qiuren, JI Peijun, XIAO Jun, et al. Cyanate ester for domestic T800 carbon fiber and its composites properties[J]. Journal of Materials Engineering,2019,47(8):125-131(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000289
    [2] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [3] 李伟, 张晨乾, 叶宏军, 等. 固化工艺参数对国产T800增强高韧性复合材料性能的影响[J]. 复合材料科学与工程, 2020(6):98-104.

    LI Wei, ZHANG Chenqian, YE Hongjun, et al. Effect of curing process parameters on the properties of high toughness composites reinforced by domestic T800 carbon fiber[J]. Composites Science and Engineering,2020(6):98-104(in Chinese).
    [4] BALDAN A. Adhesion phenomena in bonded joints[J]. International Journal of Adhesion and Adhesives,2012,38(10):95-116.
    [5] VALENZA A, FIORE V, FRATINI L. Mechanical behaviour and failure modes of metal to composite adhesive joints for nautical applications[J]. The International Journal of Advanced Manufacturing Technology,2011,53(5):593-600.
    [6] WANG C, NIU Y. Influences of surface treatment on humidity aging properties of adhesive/carbon-carbon composite joints[C]//2007 Beijing International Bonding Technology Seminar and 2nd Asian Bonding Technology Seminar. Beijing: Beijing Adhesion Society, 2007.
    [7] 邹贤武, 乔海涛, 齐楠. SY-D15表面处理剂的性能研究[J]. 粘接, 2007, 28(2):10-12. doi: 10.3969/j.issn.1001-5922.2007.02.004

    ZOU Xianwu, QIAO Haitao, QI Nan. Study on properties of SY-D15 surface treating agent[J]. Adhension in China,2007,28(2):10-12(in Chinese). doi: 10.3969/j.issn.1001-5922.2007.02.004
    [8] 李长青, 许艺, 任攀, 等. 碳纤维/环氧树脂复合材料表面激光选择性消融预处理[J]. 中国表面工程, 2016, 29(1):118-124.

    LI Changqing, XU Yi, REN Pan, et al. Pretreatment of carbon fiber reinforced epoxy resin composites by laser[J]. China Surface Enginering,2016,29(1):118-124(in Chinese).
    [9] 董立强, 张英辉, 胡高全, 等. 等离子体表面处理技术在橡胶粘合中的应用[J]. 轮胎工业, 2019, 39(4):235-238. doi: 10.12135/j.issn.1006-8171.2019.04.0235

    DONG Liqiang, ZHANG Yinghui, HU Gaoquan, et al. Application of plasma surface treatment technology in rubber adhesion[J]. Tire Industry,2019,39(4):235-238(in Chinese). doi: 10.12135/j.issn.1006-8171.2019.04.0235
    [10] CHEN P, WANG J, WANG B, et al. Improvement of interfacial adhesion for plasma-treated aramid fiber-reinforced poly(phthalazinone ether sulfone ketone) composite and fiber surface aging effects[J]. Surface & Interface Analysis,2009,41(1):38-43.
    [11] 王静, 孟伶智, 任航, 等. 等离子体处理的时效性对芳Ⅲ/双马复合材料耐湿热性能的影响[J]. 装备环境工程, 2018, 15(2):41-44.

    WANG Jing, MENG Lingzhi, REN Hang, et al. Effect of plasma aging behaviour on damp heat resistance of aramid fiber Ⅲ/BMI composite[J]. Equipment Environmental Engineering,2018,15(2):41-44(in Chinese).
    [12] WILLIAMS D F, KELLAR E J C, JESSON D A, et al. Surface analysis of 316 stainless steel treated with cold atmospheric plasma[J]. Applied Surface Science,2017,403:240-247.
    [13] 李长青, 董怀斌, 邹育根, 等. 低温空气等离子体处理对铝合金表面粘接性能的影响[J]. 中国表面工程, 2017, 30(6):34-42. doi: 10.11933/j.issn.1007-9289.20170410003

    LI Changqing, DONG Huaibin, ZOU Yugen, et al. Effects of low temperature air plasma treatment on adhesive property of aluminum alloy[J]. China Surface Engineering,2017,30(6):34-42(in Chinese). doi: 10.11933/j.issn.1007-9289.20170410003
    [14] 王云英, 孟江燕, 陈学斌, 等. 复合材料用碳纤维的表面处理[J]. 表面技术, 2007, 36(3):53-57, 60.

    WANG Yunying, MENG Jiangyan, CHEN Xuebin, et al. Surface treatment of carbonfiber for composites[J]. Surface Technology,2007,36(3):53-57, 60(in Chinese).
    [15] KOTÁL V, STOPKA P, SAJDL P, et al. Thin surface layer of plasma treated polyethylene[J]. Strength of Materials,2008,40(1):86-89.
    [16] YOOZBASHIZADEH M, CHARTOSIAS M, VICTORINO C, et al. Investigation on the effect of process parameters in atmospheric pressure plasma treatment on carbon fiber reinforced polymer surfaces for bonding[J]. Materials & Manufacturing Processes,2019,34(6):660-669.
    [17] 国家技术监督局. 高强度胶黏剂剥离强度的浮辊法测定: GB/T 7122—1996[S]. 北京: 中国标准出版社, 1996.

    State Bureau of Technical Supervision. Adhesives: Determination of peel resistance of high strength adhesive bonds floating roller method: GB/T 7122—1996[S]. Beijing: China Standards Press, 1996(in Chinese).
    [18] 中国国家标准化管理委员会. 胶粘剂拉伸剪切强度的测定(刚性材料对刚性材料): GB/T 7124—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Adhesives: Determination of tensile lap-shear strength of rigid-to-rigid bonded assemblies: GB/T 7124—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [19] 秦国锋, 那景新. 复合材料胶接接头温度-湿度-载荷老化机理研究概述[J]. 中国胶粘剂, 2020, 29(3):57-65.

    QIN Guofeng, NA Jingxin. Research on temperature-humidity-load aging mechanism of composite bonded joint[J]. China Adhesives,2020,29(3):57-65(in Chinese).
    [20] 熊玉成, 巴德玛, 李长青, 等. 表面处理对复合材料母板与维修补片粘接强度的影响[J]. 玻璃钢/复合材料, 2019(9):100-105.

    XIONG Yucheng, BA Dema, LI Changqing, et al. Effect of surface treatment on bond strength of the base laminate and reqair patches[J]. Fiber Reinforced Plastic/Composites,2019(9):100-105(in Chinese).
    [21] 朱家嵘, 顾振亚. 利用低温空气等离子体改善聚酯和聚乙烯薄膜表面亲水性的研究[J]. 天津工业大学学报, 2004, 23(4):40-43, 47. doi: 10.3969/j.issn.1671-024X.2004.04.011

    ZHU Jiarong, GU Zhenya. Research on surface hydrophilic modification of PET and PE films by low temperature air plasma[J]. Journal of Tianjin Polytechnic University,2004,23(4):40-43, 47(in Chinese). doi: 10.3969/j.issn.1671-024X.2004.04.011
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  1001
  • HTML全文浏览量:  416
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-03
  • 录用日期:  2020-10-04
  • 网络出版日期:  2020-10-16
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回