留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同聚合物基压电纤维复合材料应变性能的温度稳定性

王兵 丁亮 林秀娟 刘欢 李佳楠 黄世峰

王兵, 丁亮, 林秀娟, 等. 不同聚合物基压电纤维复合材料应变性能的温度稳定性[J]. 复合材料学报, 2021, 38(6): 1817-1824. doi: 10.13801/j.cnki.fhclxb.20201015.002
引用本文: 王兵, 丁亮, 林秀娟, 等. 不同聚合物基压电纤维复合材料应变性能的温度稳定性[J]. 复合材料学报, 2021, 38(6): 1817-1824. doi: 10.13801/j.cnki.fhclxb.20201015.002
WANG Bing, DING Liang, LIN Xiujuan, et al. Temperature stability of strain performance of piezoelectric fiber composites with different polymer matrices[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1817-1824. doi: 10.13801/j.cnki.fhclxb.20201015.002
Citation: WANG Bing, DING Liang, LIN Xiujuan, et al. Temperature stability of strain performance of piezoelectric fiber composites with different polymer matrices[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1817-1824. doi: 10.13801/j.cnki.fhclxb.20201015.002

不同聚合物基压电纤维复合材料应变性能的温度稳定性

doi: 10.13801/j.cnki.fhclxb.20201015.002
基金项目: 国家自然科学基金(51702120)
详细信息
    通讯作者:

    林秀娟,博士,副教授,研究方向为压电陶瓷及复合材料的制备与应用  E-mail:mse_linxj@ujn.edu.cn

  • 中图分类号: TB332

Temperature stability of strain performance of piezoelectric fiber composites with different polymer matrices

  • 摘要: 压电纤维复合材料驱动器应用于航天器件中时要经历严酷的环境载荷,其中温度对压电纤维复合材料驱动性能的影响至关重要。本研究制备了三种不同聚合物基压电纤维复合材料,并在−15~60℃的环境温度下测试了压电纤维复合材料的自由应变性能。结果表明,不同聚合物基压电纤维复合材料的自由应变性能均强烈依赖于环境温度,其自由应变性能均呈现随温度升高先增大后减小的趋势。在−500~1 000 V、0.1 Hz的正弦激励电压下,低玻璃化转变温度(Tg)环氧树脂基和高Tg环氧树脂基压电纤维复合材料均在40℃时具有最大纵向自由应变值1 416×10−6和1 060×10−6,聚氨酯基压电纤维复合材料则在30℃时具有最大纵向自由应变值2 361×10−6,相较前两种分别提高了66.7%和122.7%。低Tg环氧树脂基和聚氨酯基压电纤维复合材料在−15℃时的纵向自由应变值较40℃时均下降了约27.5%,而高Tg环氧树脂基压电纤维复合材料在−15~60℃温度范围内具有更高的温度稳定性,其纵向自由应变值仅下降了10.5%。

     

  • 图  1  压电纤维复合材料结构 (a) 及纤维中电场分布 (b) 示意图

    Figure  1.  Schematic diagrams of piezoelectric fiber composite (a) and electric field distribution (b)

    图  2  压电纤维复合材料实物图 (a) 及其在0.1 Hz正弦驱动电压 (b)下的自由应变行为 (c) 及与电场关系 (d)

    Figure  2.  Picture of piezoelectric fiber composites (a), 0.1 Hz sinusoidal driving voltage (b) free strain (c) and relationship between free strain and electric field (d)

    图  3  低玻璃化转变温度(Tg)环氧树脂基压电纤维复合材料在不同温度下的纵向 ((a)、(c)、(e)) 和横向 ((b)、(d)、(f)) 自由应变特性

    Figure  3.  Longitudinal ((a), (c), (e)) and transversal ((b), (d), (f)) free strain of piezoelectric fiber composite with low glass transition temperature (Tg) epoxy at different temperatures

    图  4  Tg环氧树脂基压电纤维复合材料在不同温度下的压电系数d33 (a) 和d31 (b)

    Figure  4.  d33 (a) and d31 (b) of piezoelectric fiber composite with low Tg epoxy at different temperatures

    图  5  Tg环氧树脂基压电纤维复合材料在不同温度下的纵向 ((a)、(c)) 和横向 ((b)、(d)) 自由应变

    Figure  5.  Longitudinal ((a), (c)) and transversal ((b), (d)) free strain of piezoelectric fiber composite with high Tg epoxy at different temperatures

    图  6  聚氨酯基压电纤维复合材料在不同温度下的纵向 ((a)、(c)) 和横向 ((b)、(d)) 自由应变

    Figure  6.  Longitudinal ((a), (c)) and transversal ((b), (d)) free strain of piezoelectric fiber composite with polyurethane at different temperatures

    表  1  实验所用聚合物的性能参数

    Table  1.   Physical properties of polymer

    Polymer
    matrix
    Dielectric
    constant
    Elastic
    modulus/MPa
    JH (Low Tg epoxy) 4.3 54
    Adbest 3601 (High Tg epoxy) 7.2 90
    GF-5 polyurethane 5.6 10
    Note: Tg—Glass transition temperature.
    下载: 导出CSV

    表  2  实验所用锆钛酸铅(PZT)陶瓷的性能参数

    Table  2.   Physical properties of lead zirconate titanate (PZT) ceramic

    Dieletric constantEletromchanical coupling coefficientDielectric lossBulk density/(kg·m−3)Curie temperature/℃
    2 2000.500.027 600270
    下载: 导出CSV
  • [1] BENT A A, HAGOOD N W. Piezoelectric fiber composites with interdigitated electrodes[J]. Journal of Intelligent Material Systems and Structures,1997,8:903-919. doi: 10.1177/1045389X9700801101
    [2] 李春晖. MFC驱动的可变形机翼缩比模型主动变形仿真与验证[D]. 大连: 大连理工大学, 2017.

    LI C H. Active deformation simulation and verification for the morphing wing scale model under drive of MFC[D]. Dalian: Dalian University of Technology, 2017(in Chinese).
    [3] 张红艳, 白长青, 沈亚鹏. 粗纤维压电复合材料(MFC)对旋翼桨叶模型扭转控制的实验及数值研究[J]. 应用力学学报, 2009, 26(3):456-460.

    ZHANG H Y, BAI C Q, SHEN Y P. Experimental and numerical analysis for twist control of rotor blade model with macro fiber composite (MFC)[J]. Chinese Journal of Applied Mechanics,2009,26(3):456-460(in Chinese).
    [4] PEARSON M R, EATON M J, FEATHERSON C A, et al. Impact damage detection and assessment in composite panels using macro fibre composites transducers[J]. Journal of Physics: Conference Series,2011,305:0120491.
    [5] PARK S, INMAN D J, YUN C B. An outlier analysis of MFC-based impedance sensing data for wireless structural health monitoring of railroad tracks[J]. Engineering Structures,2008,30(10):2792-2799. doi: 10.1016/j.engstruct.2008.02.019
    [6] SHAN X B, SONG R J, LIU B, et al. Novel energy harvesting: A macro fiber composite piezoelectric energy harvester in the water vortex[J]. Ceramics International,2015,41:S763-S767. doi: 10.1016/j.ceramint.2015.03.219
    [7] VAN DEN ENDE D A, VAN DE WIEL H J, GROEN W A, et al. Direct strain energy harvesting in automobile tires using piezoelectric PZT-polymer composites[J]. Smart Materials and Structures,2012,21(1):0150111.
    [8] 徐志伟, 黄雪峰, 沈星. 基于PT和MFC的飞机垂直尾翼振动主动控制[J]. 南京航空航天大学学报, 2008, 40(3):313-318. doi: 10.3969/j.issn.1005-2615.2008.03.008

    XU Z W, HUANG X F, SHEN X. Active vibration control of perpendicular empennage based on piezoelectric tran-sformer and micro fiber composites[J]. Journal of Nanjing University of Aeronautics & Astronautics,2008,40(3):313-318(in Chinese). doi: 10.3969/j.issn.1005-2615.2008.03.008
    [9] 盛贤君, 王爱武, 杨睿. 基于LaRC-MFC致动器的振动主动控制[J]. 压电与声光, 2010, 32(4):568-570. doi: 10.3969/j.issn.1004-2474.2010.04.014

    SHENG X J, WANG A W, YANG R. Active vibration control based on LaRC-MFC actuators[J]. Piezoelectrics & Acoustooptics,2010,32(4):568-570(in Chinese). doi: 10.3969/j.issn.1004-2474.2010.04.014
    [10] BAPTISTA F G, FILHO J V, INMAN D J. Real-time multi-sensors measurement system with temperature effects compensation for impedance-based structural health monitoring[J]. Structural Health Monitoring,2012,11(2):173-186. doi: 10.1177/1475921711414234
    [11] DODSON J C, INMAN D J. Thermal sensitivity of Lamb waves for structural health monitoring applications[J]. Ultrasonics,2013,53(3):677-685. doi: 10.1016/j.ultras.2012.10.007
    [12] HOBECK J D, OWEN R B, INMAN D J. Residual thermal effects in macro fiber composite actuators exposed to persistent temperature cycling[J]. Applied Physics Letters,2016,108(11):1119011.
    [13] DANO M L, GAKWAYA M, BENJAMIN J. Compensation of thermally induced distortion in composite structures using macro-fiber composites[J]. Journal of Intelligent Material Systems and Structures,2008,19(2):225-233. doi: 10.1177/1045389X06074679
    [14] DANO M L, BENJAMIN J. Active control of thermally induced distortion in composite structures using macro fiber composite actuators[J]. Smart Materials and Structures,2007,16(6):2315-2322. doi: 10.1088/0964-1726/16/6/035
    [15] PARK J S, KIM J H. Suppression of aero-thermal large deflections and snap-through behaviors of composite panels using macro fiber composite actuators[J]. Smart Materials and Structures,2004,13(6):1448-1459. doi: 10.1088/0964-1726/13/6/016
    [16] PARK J S, KIM J H. Coefficients of thermal expansion for single crystal piezoelectric fiber composites[J]. Composites Part B: Engineering,2007,38(7–8):795-799.
    [17] 张炯炯, 袁晰, 闫明洋, 等. 环境温度对压电纤维复合材料性能的影响[J]. 复合材料学报, 2021, 38(2):583-590.

    ZHANG J J, YUAN X, YAN M Y, et al. Effect of ambient temperature on the properties of piezoelectric fiber compo-sites[J]. Acta Materiae Compositae Sinica,2021,38(2):583-590(in Chinese).
    [18] WANG X Y, YUAN X, WU M L, et al. Effect of epoxy resin on the actuating performance of piezoelectric fiber compo-sites[J]. Sensors,2019,19(8):1809.
    [19] LIN X J, CHEN HY, MA Y P, et al. Investigation of temperature sensitivity of actuation performance for piezoelectric fiber composites[J]. Ceramics International, 2017, 43(13): 10590–10594.
    [20] WILLIAMS R B, INMAN D J, WILKIE W K. Temperature-dependent thermoelastic properties for macro fiber compo-site actuators[J]. Journal of Thermal Stresses,2004,27(10):903-915. doi: 10.1080/01495730490498386
    [21] PRASATH S S, AROCKIARAJAN A. Experimental and theoretical investigation on the thermo-electro-elastic properties of macro-fiber composites (MFC)[J]. Composite Structures,2015,122:8-22. doi: 10.1016/j.compstruct.2014.11.046
    [22] HOOKER M W. Properties of PZT-based piezoelectric ceramics between −150 and 250℃. NASA/CR-1998-208708[R]. Hampton: NASA, 1998.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1115
  • HTML全文浏览量:  328
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 录用日期:  2020-09-19
  • 网络出版日期:  2020-10-15
  • 刊出日期:  2021-06-23

目录

    /

    返回文章
    返回