留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶态硼化钴合金-还原石墨烯/棉织物柔性电极复合材料的制备与性能

王薇 李涛 陶璐璐 王梦

王薇, 李涛, 陶璐璐, 等. 非晶态硼化钴合金-还原石墨烯/棉织物柔性电极复合材料的制备与性能[J]. 复合材料学报, 2021, 38(7): 2265-2273. doi: 10.13801/j.cnki.fhclxb.20201014.001
引用本文: 王薇, 李涛, 陶璐璐, 等. 非晶态硼化钴合金-还原石墨烯/棉织物柔性电极复合材料的制备与性能[J]. 复合材料学报, 2021, 38(7): 2265-2273. doi: 10.13801/j.cnki.fhclxb.20201014.001
WANG Wei, LI Tao, TAO Lulu, et al. Preparation and properties of amorphous cobalt boride alloy-reduced graphene/ cotton fabric flexible electrode composite[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2265-2273. doi: 10.13801/j.cnki.fhclxb.20201014.001
Citation: WANG Wei, LI Tao, TAO Lulu, et al. Preparation and properties of amorphous cobalt boride alloy-reduced graphene/ cotton fabric flexible electrode composite[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2265-2273. doi: 10.13801/j.cnki.fhclxb.20201014.001

非晶态硼化钴合金-还原石墨烯/棉织物柔性电极复合材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20201014.001
基金项目: 江苏省重点创新训练项目(202010333016Z);江苏省基础计划项目(BK20181038)
详细信息
    通讯作者:

    王薇,博士,讲师,研究方向为柔性超级电容 E-mail:wwang8860@cslg.edu.cn

  • 中图分类号: TB332

Preparation and properties of amorphous cobalt boride alloy-reduced graphene/ cotton fabric flexible electrode composite

  • 摘要: 本文采用浸渍-干燥法和化学还原法在常温常压条件下制备了非晶态硼化钴合金-还原石墨烯(CoB-RGO)/棉织物柔性复合电极。研究了不同Co2+浓度对CoB-RGO/棉织物复合电极结构形貌及电化学性能的影响。结果表明,Co2+浓度为0.14 mol/L时非晶态CoB呈相互交错开放型3D片状结构。与非晶态CoB/织物和RGO/织物复合电极相比,非晶态CoB-RGO/棉织物复合电极表现出更为理想的电化学性能。当电流密度为0.25 mA/cm2, 非晶态CoB-RGO/棉织物复合电极的比电容为218.8 F/g。此外,非晶态CoB-RGO/棉织物复合电极的电化学性能受折叠次数和折叠角度的影响较小,表明其具有良好的柔韧性。

     

  • 图  1  棉织物、还原石墨烯(RGO)/棉织物柔性复合电极和不同浓度Co2+的非晶态CoB-RGO/棉织物柔性复合电极的XRD图谱

    Figure  1.  XRD patterns of cotton fabric, reduced graphene (RGO)/cotton fabric fabric flexible composite electrode and CoB-RGO/cotton fabric flexible composite electrodes with different Co2+ concentration

    图  2  不同Co2+浓度的非晶态CoB-RGO/棉织物柔性复合电极的SEM图像: (a)~(c) 0.093 mol/L; (d)~(f) 0.14 mol/L; (g)~(i) 0.186 mol/L

    Figure  2.  SEM images of amorphous CoB-RGO/cotton fabric flexible composite electrodes with different Co2+ concentration: (a)–(c) 0.093 mol/L; (d)–(f) 0.14 mol/L; (g)–(i) 0.186 mol/L

    图  3  非晶态CoB-RGO/棉织物柔性复合电极的EDS图谱(a)、TEM图像((b)~(d))和SAED衍射图像(e)

    Figure  3.  EDS spectra (a), TEM images ((b)–(d)) and SAED diffraction image (e) of amorphous CoB-RGO/cotton fabric flexible composite electrodes

    图  4  非晶态CoB-RGO/棉织物柔性复合电极的XPS图谱: (a)全谱; (b) Co2p; (c) B1s; (d) C1s

    Figure  4.  XPS spectra of amorphous CoB-RGO/cotton fabric flexible composite electrodes: (a) Full spectrum; (b) Co2p; (c) B1s; (d) C1s

    图  5  RGO/棉织物、非晶态CoB/棉织物和非晶态CoB-RGO/棉织物柔性复合电极的循环伏安(CV)曲线(a)和恒电流充放电(GCD)曲线(b)

    Figure  5.  Cyclic voltammetry (CV) curves (a) and galvanostatic charge-discharge (GCD) curves (b) of RGO/cotton fabric, amorphous CoB/cotton fabric and amorphous CoB-RGO/cotton fabric flexible composite electrodes

    图  6  不同Co2+浓度的非晶态CoB-RGO/棉织物柔性复合电极的CV曲线(a)和GCD曲线(b)

    Figure  6.  CV curves (a) and GCD curves (b) of amorphous CoB-RGO/cotton fabric flexible composite electrodes with different concentration of Co2+

    图  7  Co2+浓度为0.14 mol/L的非晶态CoB-RGO/棉织物柔性复合电极的CV曲线(a)和GCD曲线(b)

    Figure  7.  CV curves (a) and GCD curves (b) of amorphous CoB-RGO/cotton fabric flexible composite electrode with concentration of Co2+ of 0.14 mol/L

    图  8  Co2+浓度为0.14 mol/L的非晶态CoB-RGO/棉织物柔性复合电极的电化学阻抗图谱(a)和循环稳定曲线(b)

    Figure  8.  Electrochemical inductance spectra (a) and cycling performance (b) of amorphous CoB-RGO/cotton fabric flexible composite electrode with concentration of Co2+ of 0.14 mol/L

    图  9  非晶态CoB-RGO/棉织物柔性复合电极折叠不同角度(a)及折叠不同次数的比电容保留值(b)

    Figure  9.  Specific capacitance retention with different bended angle (a) and with different bended times (b) of amorphous CoB-RGO/cotton fabric flexible composite electrode

  • [1] LIU Z X , MO F N, LI H F, et al. Advances in flexible and wearable energy-storage textiles[J]. Small Methods,2018,2(11):1800124.
    [2] WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable E-skin and E-textile device[J]. Advance Material,2019,31(28):1901408.
    [3] ZHANG T Y, LI X, ASHER E, et al. Paper with power: Engraving 2D materials on 3D structures for printed, high-performance, binder-free, and all-solid-state supercapacitors[J]. Advanced Functional Materials,2018,28(37):1803600.
    [4] ZHU Y H, YUAN S, BAO D, et al. Decorating waste cloth via industrial wastewater for tube-type flexible and wearable sodium-ion batteries[J]. Advanced Materials,2017,29(16):1603719.
    [5] LI Y Z, ZHANG Y F, ZHANG H R, et al. A facile approach to prepare a flexible sandwichstructured supercapacitor with rGO-coated cotton fabric as electrodes[J]. RSC Advances,2019,9(8):4180-4189. doi: 10.1039/C9RA00171A
    [6] GOPI C V V M, VINODH R, SAMBASIVAM S, et al. Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: From design and development to applications[J]. Journal of Energy Storage,2020,27:101035. doi: 10.1016/j.est.2019.101035
    [7] TEBYETEKERWA M, MARRIAM I, XU Z, et al. Critical insight: Challenges and requirements of fibre electrodes for wearable electrochemical energy storage[J]. Energy & Environmental Science,2019,12(7):2148-2160.
    [8] SHAO F, HU N T, SU Y J, et al. Non-woven fabric electrodes based on graphene-based fibers for areal-energy-dense flexible solid-state supercapacitors[J]. Chemical Engineering Journal,2020,392:123692. doi: 10.1016/j.cej.2019.123692
    [9] TENG W L, ZHOU Q Q, WANG X K, et al. Hierarchically interconnected conducting polymer hybrid fiber with high specific capacitance for flexible fiber-shaped supercapacitor[J]. Chemical Engineering Journal,2020,390:122569.
    [10] DUBAL D P, CHODANKAR N R, KIM D, et al. Towards flexible solid-state supercapacitors for smart and wearable electronics[J]. Chemical Society Review,2018,47(6):2065-2129. doi: 10.1039/C7CS00505A
    [11] MAILE N, SHINDE S K, PATIL S S, et al. Capacitive property studies of electrochemically synthesized Co3O4 and Mn3O4 on inexpensive stainless steel current collector for supercapacitor application[J]. Ceramics International,2020,46(10):14640-14649. doi: 10.1016/j.ceramint.2020.02.265
    [12] LIN R, ZHU Z H, YU X, et al. Facile synthesis of TiO2/Mn3O4 hierarchical structures for fiber-shaped flexible asymmetric supercapacitors with ultrahigh stability and tailorable performance[J]. Journal of Materials Chemistry A,2020,5(2):814-821.
    [13] KIRANSAN K D, TOPCU E. SnS2-gC3N4/rGO composite paper as an electrode for high-performance flexible symmetric supercapacitors[J]. Synthetic Metals,2020,264:116390. doi: 10.1016/j.synthmet.2020.116390
    [14] WANG T, CHEN H C, YU F, et al. Boosting the cycling stability of transition metal compounds-based supercapacitors[J]. Energy Storage Materials,2019,16:545-573. doi: 10.1016/j.ensm.2018.09.007
    [15] CHEN H C, QIN Y L, CAO H J, et al. Synthesis of amorphous nickel-cobalt-manganese hydroxides for supercapacitor-battery hybrid energy storage system[J]. Energy Storage Materials,2019,17:194-203. doi: 10.1016/j.ensm.2018.07.018
    [16] CHEN H Y, OUYANG S X, ZHAO M, et al. The synergistic activity of Co and Fe in amorphous Cox-Fe-B catalyst for efficient oxygen evolution reaction[J]. ACS Applied Materials & Interfaces,2017,9(46):40333-40343.
    [17] LI H B, YU M H, WANG F X, et al. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials[J]. Nature Communications,2013,4:1894.
    [18] WANG S, HE P, XIE Z W, et al. Tunable nanocotton-like amorphous ternary Ni-Co-B: A highly efficient catalyst for enhanced oxygen evolution reaction[J]. Electrochimica Acta,2019,296:644-652. doi: 10.1016/j.electacta.2018.11.099
    [19] LI Q, XU Y X, ZHENG S S, et al. Recent progress in some amorphous materials for supercapacitors[J]. Small,2018,14(28):1800426.
    [20] WANG H, MA Y, WANG R, et al. Liquid-liquid interface-mediated room-temperature synthesis of amorphous NiCo pompoms fromultrathin nanosheets with high catalytic activity for hydrazine oxidation[J]. Chemical Communications,2015,51(17):3570-3573. doi: 10.1039/C4CC09928A
    [21] QIN W, LIU Y, LIU X Y, et al. Facile scalable production of amorphous nickel borate for high performance hybrid supercapacitors[J]. Journal of Materials Chemistry A,2018,6(40):19689-19695. doi: 10.1039/C8TA07385F
    [22] MENG Q Z, XU W, ZHU S L, et al. Low-cost fabrication of amorphous cobalt-iron-boron nanosheets for high performance asymmetric supercapacitors[J]. Electrochimica Acta,2019,296:198-205. doi: 10.1016/j.electacta.2018.11.067
    [23] CHEN R N, LIU L, ZHOU J S, et al. High-performance nickel-cobalt-boron material for an asymmetric supercapacitor with an ultrahigh energy density[J]. Journal of Power Sources,2017,341:75-82. doi: 10.1016/j.jpowsour.2016.11.108
    [24] WANG W, LI T, SUN Y Y, et al. Facile and mild method to fabricate a flexible cellulose based electrode with reduced graphene and amorphous cobalt-iron-boron alloy for wearable electronics[J]. Cellulose,2020,27:7079-7092. doi: 10.1007/s10570-020-03269-5
  • 加载中
图(9)
计量
  • 文章访问数:  820
  • HTML全文浏览量:  373
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-06
  • 录用日期:  2020-10-10
  • 网络出版日期:  2020-10-14
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回