留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

g-C3N4量子点-TiO2/导电凹凸棒石复合材料的制备及其光催化性能

左士祥 曹晓曼 吴红叶 刘文杰 李霞章 姚超 吴凤芹

左士祥, 曹晓曼, 吴红叶, 等. g-C3N4量子点-TiO2/导电凹凸棒石复合材料的制备及其光催化性能[J]. 复合材料学报, 2021, 38(8): 2706-2714. doi: 10.13801/j.cnki.fhclxb.20201011.003
引用本文: 左士祥, 曹晓曼, 吴红叶, 等. g-C3N4量子点-TiO2/导电凹凸棒石复合材料的制备及其光催化性能[J]. 复合材料学报, 2021, 38(8): 2706-2714. doi: 10.13801/j.cnki.fhclxb.20201011.003
ZUO Shixiang, CAO Xiaoman, WU Hongye, et al. Preparation of g-C3N4 quantum dot-TiO2/conductive attapulgite composites and their photocatalytic performance[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2706-2714. doi: 10.13801/j.cnki.fhclxb.20201011.003
Citation: ZUO Shixiang, CAO Xiaoman, WU Hongye, et al. Preparation of g-C3N4 quantum dot-TiO2/conductive attapulgite composites and their photocatalytic performance[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2706-2714. doi: 10.13801/j.cnki.fhclxb.20201011.003

g-C3N4量子点-TiO2/导电凹凸棒石复合材料的制备及其光催化性能

doi: 10.13801/j.cnki.fhclxb.20201011.003
基金项目: 江苏省重点研发计划(BE2018649);淮安市自然科学研究计划(HAB201952);国家自然科学基金(51702026)
详细信息
    通讯作者:

    姚超,博士,教授,研究方向为粘土矿物材料功能化、表面与界面  E-mail:yaochao420@163.com

  • 中图分类号: TB332;O644.1;X703

Preparation of g-C3N4 quantum dot-TiO2/conductive attapulgite composites and their photocatalytic performance

Funds: Key R & D Programs of Jiangsu Province (BE2018649); Natural Science Research Program of Huaian City (HAB201952); National Science Foundation of China (51702026)
  • 摘要: 通过水热法在导电凹凸棒石(C-ATP)表面原位生长TiO2纳米棒制得毛虫状结构的TiO2/C-ATP复合材料,然后以TiO2/C-ATP为载体,在TiO2纳米棒表面进一步复合g-C3N4量子点(CNQD)成功制备了多级结构的CNQD-TiO2/C-ATP异质结光催化材料。利用XRD、FTIR、SEM/TEM、紫外-可见吸收光谱(UV-Vis-DRS)、荧光发射光谱(PL)、BET比表面积分析仪和光电化学等技术对样品进行表征。在可见光照射下,考察了样品对盐酸四环素(TC)的光催化降解能力。结果表明:与TiO2/C-ATP和CNQD相比,CNQD-TiO2/C-ATP大幅提高了可见光响应、吸收能力和光生电子-空穴对的分离效率。当光照时间为120 min时,CNQD-TiO2/C-ATP对TC去除率可达88%。

     

  • 图  1  g-C3N4量子点(CNQD)、导电凹凸棒石(C-ATP)、TiO2/C-ATP和CNQD-TiO2/C-ATP复合材料的XRD图谱

    Figure  1.  XRD patterns of g-C3N4 quantum dots (CNQD), conductive attapulgite (C-ATP), TiO2/C-ATP and CNQD-TiO2/C-ATP composite

    图  2  TiO2/C-ATP、CNQD和CNQD-TiO2/C-ATP复合材料的FTIR和XPS图谱

    Figure  2.  FTIR and XPS spectra of TiO2/C-ATP, CNQD and CNQD-TiO2/C-ATP

    图  3  C-ATP (a)、TiO2/C-ATP ((b), (c))和CNQD-TiO2/C-ATP ((d)~(f))的TEM图像

    Figure  3.  TEM images of C-ATP (a), TiO2/C-ATP ((b),(c)) and CNQD-TiO2/C-ATP ((d)-(f))

    图  4  CNQD-TiO2/C-ATP的SEM图像

    Figure  4.  SEM images of major elements of CNQD-TiO2/C-ATP

    图  5  C-ATP、TiO2/C-ATP、CNQD和CNQD-TiO2/C-ATP的UV-Vis-DRS图谱 (a) 和带隙图 (b)

    Figure  5.  UV-Vis-DRS spectra (a) and the plots of band gap energies (b) of C-ATP, TiO2/C-ATP, CNQD and CNQD-TiO2/C-ATP

    图  6  TiO2/C-ATP、CNQD和CNQD-TiO2/C-ATP的PL图谱

    Figure  6.  PL spectra of TiO2/C-ATP, CNQD and CNQD-TiO2/C-ATP

    图  7  TiO2/C-ATP、CNQD和CNQD-TiO2/C-ATP的I-t (a)和EIS曲线(b)

    Figure  7.  I-t (a) and EIS curves (b) of TiO2/C-ATP, CNQD and CNQD-TiO2/C-ATP

    图  8  C-ATP、TiO2/C-ATP和CNQD-TiO2/C-ATP的N2吸附-脱附(a)和孔径分布曲线(b)

    Figure  8.  N2 adsorption-desorption isotherms (a) and pore-size distributions (b) of C-ATP,TiO2/C-ATP and CNQD-TiO2/C-ATP

    图  9  不同时间的盐酸四环素(TC)光催化产物的UV-Vis-DRS图谱 (a) 和可见光下不同催化剂对TC的去除率曲线 (b)

    Figure  9.  UV-Vis-DRS spectra of tetracycline hydrochloride (TC) photocatalytic products at different time periods (a) and curves of TC removal rate of different catalysts under visible light (b)

    CTOC—Concentration of total organic carbon

    图  10  TC初始浓度 (a) 和光催化剂添加量 (b) 对TC去除率的影响

    Figure  10.  Effect of initial TC concentration (a) and photocatalyst addition amount (b) on TC removal rate

    图  11  CNQD-TiO2/C-ATP复合材料循环5次试验后的TC降解效率对比

    Figure  11.  TC removal rate comparison of denitrification performance of the CNQD-TiO2/C-ATP composite photocatalysts after cycling 5 times

    图  12  CNQD-TiO2/C-ATP的光催化机制

    Figure  12.  Photocatalytic mechanism of CNQD-TiO2/C-ATP

  • [1] LWIN H M, ZHAN W Q, SONG S X, et al. Visible-light photocatalytic degradation pathway of tetracycline hydrochloride with cubic structured ZnO/SnO2 heterojunction nanocatalyst[J]. Chemical Physics Letters,2019,736:136806. doi: 10.1016/j.cplett.2019.136806
    [2] CAO Y, LEI X Y, CHEN Q L, et al. Enhanced photocatalytic degradation of tetracycline hydrochloride by novel porous hollow cube ZnFe2O4[J]. Journal of Photochemistry and Photobiology A: Chemistry,2018,364:794-800. doi: 10.1016/j.jphotochem.2018.07.023
    [3] MA X, CHEN K Y, NIU B, et al. Preparation of BiOCl0.9I0.1/β-Bi2O3 composite for degradation of tetracycline hydrochloride under simulated sunlight[J]. Chinese Journal of Catalysis,2020,41(10):1535-1543. doi: 10.1016/S1872-2067(19)63486-8
    [4] VIGNESH K, MATHEW S, BARTLETT J, et al. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances[J]. Applied Catalysis B: Environmental,2019,244:1021-1064. doi: 10.1016/j.apcatb.2018.11.080
    [5] GUO Y, GUO T, CHEN J H, et al. Synthesis of C-N-S co-doped TiO2 mischcrystal with an isobandgap characteristic and its photocatalytic activity under visible light[J]. Catalysis Science & Technology,2018,8(16):4108-4121.
    [6] WANG Q, QIAO Z, JIANG P, et al. Hydrothermal synthesis and enhanced photocatalytic activity of mixed-phase TiO2 powders with controllable anatase/rutile ratio[J]. Solid State Sciences,2018,77:14-19. doi: 10.1016/j.solidstatesciences.2018.01.003
    [7] WU J, MA X J, XU L M, et al. Fluorination promoted photoinduced modulation of Pt clusters on oxygen vacancy enriched TiO2/Pt photocatalyst for superior photocatalytic performance[J]. Applied Surface Science,2019,489:510-518. doi: 10.1016/j.apsusc.2019.05.304
    [8] WANG C, CAO M H, WANG P F, et al. Preparation of graphene-carbon nanotube-TiO2 composites with enhanced photocatalytic activity for the removal of dye and Cr (VI)[J]. Applied Catalysis A-General,2014,473:83-89. doi: 10.1016/j.apcata.2013.12.028
    [9] LI B, CHEN X G, ZHANG T Y, et al. Photocatalytic selective hydroxylation of phenol to dihydroxybenzene by BiOI/TiO2 p-n heterojunction photocatalysts for enhanced photocatalytic activity[J]. Applied Surface Science,2018,439:1047-1056. doi: 10.1016/j.apsusc.2017.12.220
    [10] LIU J J, CHENG B, Yu JG. A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure[J]. Physical Chemistry Chemical Physics,2016,18(45):31175-31183. doi: 10.1039/C6CP06147H
    [11] GUO Y R, XIAO L M, ZHANG M, et al. An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 heterostructure for enhanced visible light photocatalytic performance[J]. Applied Surface Science,2018,440:432-439. doi: 10.1016/j.apsusc.2018.01.144
    [12] LIN X, LIU C, WANG J B, et al. Graphitic carbon nitride quantum dots and nitrogen-doped carbon quantum dots co-decorated with BiVO4 microspheres: A ternary heterostructure photocatalyst for water purification[J]. Separation and Purification Technology,2019,226:117-127. doi: 10.1016/j.seppur.2019.05.093
    [13] JIANG G D, LIN Z F, ZHU L H. Preparation and photoelectrocatalytic properties of titania/carbon nanotube compo-site films[J]. Carbon,2010,48(12):3369-3375. doi: 10.1016/j.carbon.2010.05.029
    [14] LI Y Y, WANG J G, SUN H H, et al. Heterostructured SnS2/SnO2 nanotubes with enhanced charge separation and excellent photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy,2018,43(31):14121-14129. doi: 10.1016/j.ijhydene.2018.05.130
    [15] YU Y T, WANG C Q, JIANG C, et al. Resistive switching behavior in memristors with TiO2 nanorod arrays of different dimensions[J]. Applied Surface Science,2019,485:222-229. doi: 10.1016/j.apsusc.2019.04.119
    [16] SU J Y, ZHU L, CHEN G H. Ultrasmall graphitic carbon nitride quantum dots decorated self-organized TiO2 nanotube arrays with highly efficient photoelectrochemical activity[J]. Applied Catalysis B: Environmental,2016,186:127-135. doi: 10.1016/j.apcatb.2015.12.050
    [17] LIU L, QI Y H, HU J S, et al. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core@shell Cu2O@g-C3N4 octahedra[J]. Applied Surface Science,2015,351:1146-1154. doi: 10.1016/j.apsusc.2015.06.119
    [18] YADAV P, NISHANTHI S, PUROHIT B, et al. Metal-free visible light photocatalytic carbon nitride quantum dots as efficient antibacterial agents: An insight study[J]. Carbon,2019,152:587-597. doi: 10.1016/j.carbon.2019.06.045
    [19] WANG H, LIANG Y H, LIU L, et al. Highly ordered TiO2 nanotube arrays wrapped with g-C3N4 nanoparticles for efficient charge separation and increased photoelectrocatalytic degradation of phenol[J]. Journal of Hazardous Materials,2018,344:369-380. doi: 10.1016/j.jhazmat.2017.10.044
    [20] ZUO S X, YAO C, LIU W J, et al. Preparation of Ureido-palygorskite and its effect on the properties of urea-formaldehyde resin[J]. Applied Clay Science,2013,80-81:133-139. doi: 10.1016/j.clay.2013.06.031
    [21] LIANG Z, HOU H L, FANG Z, et al. Hydrogenated TiO2 nanorod arrays decorated with carbon quantum dots toward efficient photoelectrochemical water splitting[J]. ACS Applied Materials & Interfaces,2019,11(21):19167-19175.
    [22] LIN X, XU D, ZHAO R, et al. Highly efficient photocatalytic activity of g-C3N4 quantum dots (CNQDs)/Ag/Bi2MoO6 nanoheterostructure under visible light[J]. Separation and Purification Technology,2017,178:163-168. doi: 10.1016/j.seppur.2017.01.020
    [23] SU J Y, ZHU L, GENG P, et al. Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction or pollutants degradation under solar light[J]. Journal of Hazardous Materials,2016,316:159-168. doi: 10.1016/j.jhazmat.2016.05.004
    [24] WANG Y P, LI YK, ZHAO J L, et al. g-C3N4/B doped g-C3N4 quantum dots heterojunction photocatalysts for hydrogen evolution under visible light[J]. International Journal of Hydrogen Energy,2019,44(2):618-628. doi: 10.1016/j.ijhydene.2018.11.067
    [25] YIN S, CHEN Y, HU Q S, et al. In-situ preparation of iron(II) phthalocyanine modified bismuth oxybromide with enhanced visible-light photocatalytic activity and mechanism insight[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,575:339-345.
    [26] ZHANG Y G, WU M Y, KWORK Y, et al. In-situ synthesis of heterojunction TiO2/MnO2 nanostructure with excellent performance in vacuum ultraviolet photocatalytic oxidation of toluene[J]. Applied Catalysis B: Environmental,2019,259(15):118034.
  • 加载中
图(12)
计量
  • 文章访问数:  1485
  • HTML全文浏览量:  421
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-17
  • 录用日期:  2020-09-24
  • 网络出版日期:  2020-10-12
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回