留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竹炭基铈掺杂氧化锌制备及催化降解亚甲基蓝

王儒杰 余锡孟 王芳芳 钱年龙 沈忠权 邱观音生

王儒杰, 余锡孟, 王芳芳, 等. 竹炭基铈掺杂氧化锌制备及催化降解亚甲基蓝[J]. 复合材料学报, 2021, 38(6): 1890-1904. doi: 10.13801/j.cnki.fhclxb.20201010.001
引用本文: 王儒杰, 余锡孟, 王芳芳, 等. 竹炭基铈掺杂氧化锌制备及催化降解亚甲基蓝[J]. 复合材料学报, 2021, 38(6): 1890-1904. doi: 10.13801/j.cnki.fhclxb.20201010.001
WANG Rujie, YU Ximeng, WANG Fangfang, et al. Preparation of carbon supported cerium doped zinc oxide composite material and its photocatalytic properties study in degradation of methylene blue dye[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1890-1904. doi: 10.13801/j.cnki.fhclxb.20201010.001
Citation: WANG Rujie, YU Ximeng, WANG Fangfang, et al. Preparation of carbon supported cerium doped zinc oxide composite material and its photocatalytic properties study in degradation of methylene blue dye[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1890-1904. doi: 10.13801/j.cnki.fhclxb.20201010.001

竹炭基铈掺杂氧化锌制备及催化降解亚甲基蓝

doi: 10.13801/j.cnki.fhclxb.20201010.001
基金项目: 嘉兴市科技计划项目(2018AY11003)
详细信息
    通讯作者:

    沈忠权,博士,讲师,研究方向为皮革助剂应用及水性聚氨酯合成  E-mail:shenzhongquan@zju.edu.cn

  • 中图分类号: X703;TQ426.65

Preparation of carbon supported cerium doped zinc oxide composite material and its photocatalytic properties study in degradation of methylene blue dye

  • 摘要: 以竹粉为碳源、ZnCl2为锌源、六水合硝酸铈(Ⅲ)(Ce(NO3)3·6H2O)为铈源,采用一锅法制备得到新型竹炭负载Ce掺杂ZnO复合材料(Ce-ZnO/BC)。利用XRD、FTIR、SEM、EDS、BET、XPS、紫外-可见光漫反射光谱(DRS)及光致荧光光谱(PL)对所制备复合材料进行全面表征,并对其光催化降解有机染料性能进行了研究。获得了催化材料的最佳制备条件:ZnCl2与竹粉浸渍比为3∶10,煅烧温度为500℃,Ce(NO3)3·6H2O加入量为ZnCl2的2.5%。所得材料分别以日光和紫外光为光源,在暗处吸附20 min,光照120 min、亚甲基蓝(MB)溶液50 mL(10 mg·L−1),催化剂用量为40 mg 条件下,对MB降解率分别为92.2%和93.7%。并且研究结果表明,其催化MB降解符合一级反应动力学原理,催化剂具有一定的重复使用性能。

     

  • 图  1  不同煅烧温度下系列材料的XRD图谱

    Figure  1.  XRD patterns of materials calcined at different temperatures

    图  2  不同浸渍比系列材料的XRD图谱

    Figure  2.  XRD patterns of materials prepared with different impregnation ratios

    图  3  不同Ce掺杂量系列材料的XRD图谱

    Figure  3.  XRD patterns of materials doped with different amount of Ce

    图  4  不同煅烧温度下系列材料FIIR图谱

    Figure  4.  FIIR spectra of materials calcined at different temperatures

    图  5  不同Ce掺杂量系列材料FIIR图谱

    Figure  5.  FIIR spectra of materials doped with different amount of Ce

    图  6  不同浸渍比系列材料的SEM图像

    Figure  6.  SEM images of materials prepared with different impregnation ratios((a) 2∶10; (b) 3∶10; (c) 4∶10)

    图  7  不同Ce掺杂量系列材料的SEM图像

    Figure  7.  SEM images of materials doped with different amount of Ce (((a), (b))0.0125∶1; ((c), (d)) 0.025∶1; ((e), (f)) 0.05∶1; ((g), (h)) 0.075∶1; ((i), (j)) 0.1∶1)

    图  8  2.5%Ce-ZnO/BC的SEM形貌图及C、Zn、O及Ce元素EDS面扫描图像

    Figure  8.  SEM images and EDS mappings of C, Zn, O and Ce element of a structure grown on a sample with 2.5%Ce-ZnO/BC

    图  9  材料N2吸/脱附曲线和孔径分布图(插图)

    Figure  9.  N2 adsorption/desorption isotherm and pore size distribution (illustration) of composites

    图  10  2.5%Ce-ZnO/BC的XPS图谱

    Figure  10.  XPS spectra of 2.5%Ce-ZnO/BC

    图  11  500℃-ZnO/BC-0.3及不同掺杂量的Ce-ZnO/BC的紫外可见漫反射光谱图

    Figure  11.  UV-visible diffuse reflectance spectra of 500℃-ZnO/BC-0.3 and Ce-ZnO/BC samples

    图  12  500℃-ZnO/BC-0.3及不同掺杂量的Ce-ZnO/BC的荧光致发光光谱(PL)光谱

    Figure  12.  Photoluminescence spectroscopy (PL) spectra of ZnO and ZnO doped with different amounts of Ce

    图  13  500℃-ZnO/BC-0.3日光下降解MB的紫外可见吸收光谱变化

    Figure  13.  UV-Vis spectral changes during photodegradation of MB at 500℃-ZnO/BC-0.3 under sunlight irradiation

    图  14  500℃-ZnO/BC-0.3紫外光下降解MB的紫外可见吸收光谱变化

    Figure  14.  UV-Vis sPectral changes during photodegradation of MB at 500℃-ZnO/BC-0.3 under UV irradiation

    图  15  日光下Ce-ZnO/BC系列材料降解 MB 的光催化活性 (a) 及反应动力学 (b)

    Figure  15.  Photocatalytic activity (a) and kinetics (b) of MB degradation under sunlight irradiation for ZnO/BC and Ce-ZnO/BC samples

    图  16  紫外光下Ce-ZnO/BC系列材料降解MB 的光催化活性 (a) 及反应动力学 (b)

    Figure  16.  Photocatalytic activity (a) and kinetics (b) of MB degradation under UV irradiation for ZnO/BC and Ce- ZnO/BC samples

    图  17  2.5%Ce-ZnO/BC使用循环对催化剂活性的影响

    Figure  17.  Influence of 2.5%Ce-ZnO/BC use cycles on the activities of catalyst composites

    表  1  ZnO/BC和Ce-ZnO/BC材料制备及命名

    Table  1.   Preparation and nomenclature of ZnO/BC and Ce-ZnO/BC

    PhotocatalystTemperature/℃(mZnCl2/mBamboo)/%(mCe(NO3)3•6H2O/mZnCl2)/%
    300 ℃-ZnO/BC-0.3 300 0.3
    400 ℃-ZnO/BC-0.3 400 0.3
    500 ℃-ZnO/BC-0.3 500 0.3
    600 ℃-ZnO/BC-0.3 600 0.3
    700 ℃-ZnO/BC-0.3 700 0.3
    500 ℃-ZnO/BC-0.2 500 0.2
    500 ℃-ZnO/BC-0.4 500 0.4
    1.25%Ce-ZnO/BC 500 1.25
    2.5%Ce-ZnO/BC 500 2.5
    5%Ce-ZnO/BC 500 5
    7.5%Ce-ZnO/BC 500 7.5
    10%Ce-ZnO/BC 500 10
    下载: 导出CSV

    表  2  系列材料的EDS分析结果

    Table  2.   EDS characterization results of different materials

    EntryPhotocatalystAtom fraction/at%
    CZnCe
    1 300℃-ZnO/BC-0.3 75.84 0.38
    2 400℃-ZnO/BC-0.3 84.78 2.97
    3 500℃-ZnO/BC-0.3 87.31 5.73
    4 600℃-ZnO/BC-0.3 87.64 1.51
    5 700℃-ZnO/BC-0.3 90.16 1.41
    6 500℃-ZnO/BC-0.2 92.10 2.06
    7 500℃-ZnO/BC-0.4 79.21 15.09
    8 1.25%Ce-ZnO/BC 89.69 4.37 0.03
    9 2.5%Ce-ZnO/BC 84.42 5.46 0.16
    10 5%Ce-ZnO/BC 83.11 5.24 0.29
    11 7.5%Ce-ZnO/BC 83.17 6.29 0.49
    12 10%Ce-ZnO/BC 82.79 6.11 0.61
    下载: 导出CSV

    表  3  Ce-ZnO/BC和ZnO/BC光催化剂在日光下的一级反应动力常数kaR2

    Table  3.   First order reaction rate constant (ka) and R2 of photocatalysts under sunlight irradiation of Ce-ZnO/BC and ZnO/BC

    EntryPhotocatalystLinear regression equationka/min−1R2
    1 500℃-ZnO/BC-0.3 Y=0.0128X+0.0241 0.0128 0.981
    2 1.25%Ce-ZnO/BC Y=0.0186X−0.075 0.0186 0.974
    3 2.5%Ce-ZnO/BC Y=0.0205X+0.0929 0.0205 0.999
    4 5%Ce-ZnO/BC Y=0.0164X+0.0593 0.0164 0.998
    5 7.5%Ce-ZnO/BC Y=0.0141X+0.072 0.0141 0.987
    6 10%Ce-ZnO/BC Y=0.0123X+0.0652 0.0123 0.996
    下载: 导出CSV

    表  4  Ce-ZnO/BC和ZnO/BC光催化剂在紫外光下的kaR2

    Table  4.   ka and R2 of photocatalysts under UV irradiation of Ce-ZnO/BC and ZnO/BC

    EntryPhotocatalystLinear regression equationka/min−1R2
    1 500℃-ZnO/BC-0.3 Y=0.0079X+0.1978 0.0079 0.934
    2 1.25%Ce-ZnO/BC Y=0.0106X+0.1235 0.0106 0.974
    3 2.5%Ce-ZnO/BC Y=0.0231X−0.2397 0.0231 0.923
    4 5%Ce-ZnO/BC Y=0.0119X+0.0652 0.0119 0.933
    5 7.5%Ce-ZnO/BC Y=0.0083X+0.1693 0.0083 0.967
    6 10%Ce-ZnO/BC Y=0.0084X+0.1683 0.0084 0.966
    下载: 导出CSV
  • [1] NEENA D, KONDAMAREDDY K K, BIN H, et al. Enhanced visible light photodegradation activity of RhB/MB from aqueous solution using nanosized novel Fe-Cd co-modified ZnO[J]. Scientific Reports,2018,8:10691. doi: 10.1038/s41598-018-29025-1
    [2] PASCARIU P, AIRINEI A, OLARU N, et al. Photocatalytic degradation of Rhodamine B dye using ZnO-SnO2 electrospun ceramic nanofibers[J]. Ceramics International,2016,42(6):6775–6781.
    [3] RAJENDRAN S, KHAN M. M, GRACIA F, et al. Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite[J]. Scientific Reports,2016,6:31641. doi: 10.1038/srep31641
    [4] PHILLIPS R B, JAMES R R, MAGNUSON M L. Electrolyte selectionandmicrobial toxicity for electrochemical oxidative water treatment using a boron-doped diamond anode to support site specific contamination incident response[J]. Chemosphere,2018,197:135-141. doi: 10.1016/j.chemosphere.2018.01.007
    [5] KATHERESAN V, KANSEDO J, LAU S Y. Efficiency of various recent wastewater dye removal methods: A review[J]. Journal of Environmental Chemical Engineering,2018,6(4):4676-4697. doi: 10.1016/j.jece.2018.06.060
    [6] DAI M. Mechanism of adsorption for dyes on activated carbon[J]. Journal of Colloid and Interface Science,1998,198(1):6-10. doi: 10.1006/jcis.1997.5254
    [7] ZULARISAM A W, ISMAIL A F, SALIM R. Behaviours of natural organic matter in membrane filtration for surface water treatment: A review[J]. Desalination,2006,194(1):211-231.
    [8] 钟伟, 夏颖帆, 翟杭玲, 等. 共沉淀法制备稀土Ce掺杂的纳米ZnO及其光催化降解染料的性能[J]. 无机化学学报, 2020, 36(1):40-52. doi: 10.11862/CJIC.2020.006

    ZHONG W, XIA Y F, ZHAI H L, et al. Preparation by Co-precipitation method and photocatalytic performances on the degradation of dyes of Ce3+-doped nano-ZnO[J]. Chinese Journal of Inorganic Chemistry,2020,36(1):40-52(in Chinese). doi: 10.11862/CJIC.2020.006
    [9] LI D, HANEDA H. Morphologies of zinc oxide particles and their effects on photocatalysis[J]. Chemosphere,2003,51(2):129-137. doi: 10.1016/S0045-6535(02)00787-7
    [10] YU X L, QIN A M, LIAO L, et al. Removal of organic dyes by nanostructure ZnO-bamboo charcoal composites with photocatalysis function[J]. Advances in Materials Science and Engineering,2015:1-6.
    [11] BYRAPPA K, SUBRAMANI A K, ANANDA S, et al. Impregnation of ZnO onto activated carbon under hydrothermal conditions and its photocatalytic properties[J]. Journal of Materials Science,2006,41(5):1355-1362. doi: 10.1007/s10853-006-7341-x
    [12] WU C H, SHR J F, WU C F, et al. Synthesis and photocatalytic characterization of titania-supported bamboo charcoals by using sol-gel method[J]. Journal of Materials Processing Technology,2008,203:326-332. doi: 10.1016/j.jmatprotec.2007.10.073
    [13] 林文胜, 王欢, 杨东杰, 等. 木质素碳/氧化锌复合材料的制备及其光催化性能[J]. 高校化学工程学报, 2020, 36(1):40-52.

    LIN W S, WANG H, YANG D J, et al. Preparation of lignin-based carbon/zinc oxide composites and their photocatalytic performance[J]. Chinese Journal of Inorganic Chemistry,2020,36(1):40-52(in Chinese).
    [14] 金雯, 曲雯雯, 彭金辉, 等. 炭基氧化锌复合材料的研究进展[J]. 材料导报, 2012, 26(13):62-69. doi: 10.3969/j.issn.1005-023X.2012.13.013

    JIN W, QU W W, PENG J H, et al. Review of research in ZnO/AC composite materials[J]. Materials Review,2012,26(13):62-69(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.13.013
    [15] KHANITTA I, PONGSATON A, SUMETHA S, et al. Effect of Ag loading on activated carbon doped ZnO for bisphenol A degradation under visible light[J]. Advanced Powder Technology,2018,29(11):2608-2615. doi: 10.1016/j.apt.2018.07.006
    [16] 张齐生. 重视竹材化学利用, 开发竹炭应用技术[J]. 竹子研究汇刊, 2001, 20(3):34-35.

    ZHANG Q S. Playing great attention on bamboo chemical processing and exploiting bamboo charcoal applying technique[J]. Journal of Bamboo Research,2001,20(3):34-35(in Chinese).
    [17] 朱丽虹, 蒋乐, 汪洋. 溶剂热法制备ZnO/竹炭及其光降解甲基橙性能[J]. 浙江理工大学学报, 2016, 35(6):826-831.

    ZHU L H, JIANG L, WANG Y. Preparation of ZnO/bamboo charcoal by solvothermal method and its photocatalytic degradation property on methyl orange[J]. Journal of Zhejiang Sci-Tech University,2016,35(6):826-831(in Chinese).
    [18] ZHOU Y L, HU Z B, TONG M X, et al. Preparation and photocatalytic performance of bamboo-charcoal-supported nano-ZnO composites[J]. Materials Science,2018,24(1):49-52.
    [19] 陈霞, 陆改玲, 计晶晶, 等. 稀土元素(镧、铈)掺杂TiO2复合材料的制备及其光催化性和抑菌性的研究[J]. 人工晶体学报, 2020, 49(1):62-66. doi: 10.3969/j.issn.1000-985X.2020.01.010

    CHEN X, LU G L, JI J J, et al. Photocatalytic and antibacterial activity of rare earth element (La, Ce)doped TiO2 composite[J]. Journal of Synthetic Crystals,2020,49(1):62-66(in Chinese). doi: 10.3969/j.issn.1000-985X.2020.01.010
    [20] 黄丽礼, 赵深茂, 邓越全. 稀土钕掺杂氧化锌纳米材料的制备及对罗丹明B的降解研究[J]. 无机盐工业, 2019, 51(8):88-92.

    HUANG L L, ZHAO S M, DENG Y Q. Preparation of rare earth Nd-doped ZnO nano-materials and its degradation of Rhodamine B[J]. Inorganic Chamicals Industry,2019,51(8):88-92(in Chinese).
    [21] 张进, 姜婷婷, 蔡君一. Ce掺杂氧化锌的制备及应用研究[J]. 化工新型材料, 2019, 47(1):252-258.

    ZHANG J, JIANG T T, CAI J Y. Study on syntnesis and photocatalysis of Ce doped ZnO[J]. New Chamical Materials,2019,47(1):252-258(in Chinese).
    [22] 冯雅楠, 甘俊珍, 陈星辉, 等. 形貌的粒度对纳米二氧化铈光催化降解盐基品红的研究[J]. 应用化工, 2019, 48(1):14-17. doi: 10.3969/j.issn.1671-3206.2019.01.004

    FENG Y N, GAN J Z, CHEN X H, et al. Study of morphology and particle size of nano-CeO2 on basic fuchsine photocatalytic degradation[J]. Applied Chemical Industry,2019,48(1):14-17(in Chinese). doi: 10.3969/j.issn.1671-3206.2019.01.004
    [23] MATTIA Costamagna, LUCA Ciacci, MARIA Cristina Paganini, et al. Combining the highest degradation efficiency with the lowest environmental impact in zinc oxide based photocatalytic systems[J]. Journal of Cleaner Production,2020,252:119762.
    [24] 陈林, 彭国良, 宋杰光, 等. Ce3+掺杂纳米ZnO的制备及其可见光光催化性能研究[J]. 化工新型材料, 2020, 48(1):200-206.

    CHEN L, PENG G L, SONG J G. Study on preparation and visible photocatalytic of Zn1-xCexO[J]. New Chamical Materials,2020,48(1):200-206(in Chinese).
    [25] 汪应灵, 谢友海, 薛载坤, 等. Ce掺杂ZnO纳米晶的光催化性能研究[J]. 人工晶体学报, 2011, 40(4):917-920, 931. doi: 10.3969/j.issn.1000-985X.2011.04.020

    WANG Y L, XIE Y H, XUE Z K, et al. Photocatalytic properties of Ce doped ZnO nanocrystalline[J]. Journal of Synthetic Crystals,2011,40(4):917-920, 931(in Chinese). doi: 10.3969/j.issn.1000-985X.2011.04.020
    [26] 张会平, 叶李艺, 杨立春. 氯化锌活化法制备木质活性炭研究[J]. 材料科学与工艺, 2006, 14(1):42-45. doi: 10.3969/j.issn.1005-0299.2006.01.013

    ZHANG H P, YE L Y, YANG C L. Preparation of activated carbon from sawdust by chemical activation with zinc chloride[J]. Materials Science and Technology,2006,14(1):42-45(in Chinese). doi: 10.3969/j.issn.1005-0299.2006.01.013
    [27] 王古平, 彭萍萍, 赵森, 等. Ce掺杂ZnO的晶体结构、发光和光催化性能的不同机理[J]. 化学工程师, 2019(4):13-17, 26.

    WANG G P, PENG P P, ZHAO S, et al. Different mechanisms of crystal structure, luminescent property and photocatalytic activity of Ce doped ZnO[J]. Chemical Engineer,2019(4):13-17, 26(in Chinese).
    [28] 翁诗甫. 傅里叶变换红外光谱分析[M]. 第2版. 北京: 化学工业出版社, 2012: 327-328.

    WENG Shifu. Fourier transform infrared spectrometry analysis[M]. 2nd Edition. Beijing: Chemical Industry Press, 2012: 327-328(in Chinese).
    [29] 刘峥, 韦梦琴, 杜弱莹, 等. 活化温度对桉树皮基活性炭的特性影响及吸附性能研究[J]. 生态与农村环境学报, 2020, 36(2):265-271.

    LIU Z, WEI M Q, DU Y Y, et a1. Effect of activation temperature on the properties and adsorption performance of eucalyptus robusta based activated carbon[J]. Journal of Ecology and Rural Environment,2020,36(2):265-271(in Chinese).
    [30] 李允超, 王贤华, 杨海平, 等. 竹炭表面结构及其对糠醛的吸附特性[J]. 农业工程学报, 2012, 28(12):257-263. doi: 10.3969/j.issn.1002-6819.2012.12.041

    LI Y C, WANG X H, YANG H P, et al. Surface structure of bamboo charcoal and its adsorption property on furfural[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(12):257-263(in Chinese). doi: 10.3969/j.issn.1002-6819.2012.12.041
    [31] AHMADPOUR A, DO D D. The preparation of activated carbon from macadamia nutshell by chemical activation[J]. Carbon,1997,35(12):1723-1732. doi: 10.1016/S0008-6223(97)00127-9
    [32] SAPKOTA K P, LEE I, ABU H, et al. Solar-light-driven efficient ZnO-single-walled carbon nanotube photocatalyst for the degradationof a persistent water pollutant organic dye[J]. Catalysts,2019,9(498):1-14.
    [33] ZHANG X W, ZHANG X L, WANG X, et al. Enhancing the photocatalytic activity and photostability of zinc oxide nanorod arrays via graphitic carbon mediation[J]. Chinese Journal of Catalysis,2018,39(5):973-981. doi: 10.1016/S1872-2067(18)63010-4
    [34] CERRATO E, GIONCO C, BERRUTI I, et al. R are earth ions doped ZnO: Synthesis, characterization and preliminary photoactivity assessment[J]. Journal of Solid State Chemistry,2018,264:42-47. doi: 10.1016/j.jssc.2018.05.001
    [35] SENTHILKANNAN K, MALARKODI V, VENKATACHALAM K, et al. Fluorescence (FL) activities of Ce doped zinc oxide nano particles[J]. Materials Today: Proceedings,2020,33:2774-2775.
    [36] HEMANT K V, MAHAK V, MAURYA K K. Synthesis, characterization and sun light-driven photocatalytic activity of zinc oxide nanostructures[J]. Journal of Nanoscience and Nanotechnology,2020,6(20):3683-3692.
    [37] LI S Q, ZHOU P J, ZHANG W S, et al. Effective photocatalytic decolorization of methylene blue utilizing ZnO/rectorite nanocomposite under simulated solar irradiation[J]. Journal of Alloys and Compounds,2014,616:227-234. doi: 10.1016/j.jallcom.2014.07.102
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  1205
  • HTML全文浏览量:  475
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-20
  • 录用日期:  2020-09-22
  • 网络出版日期:  2020-10-10
  • 刊出日期:  2021-06-23

目录

    /

    返回文章
    返回