留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

漂浮型Ag2CrO4-g-C3N4-TiO2/膨胀珍珠岩可见光催化材料除藻性能

宋靖珂 王学江 王佳忆 王鑫

宋靖珂, 王学江, 王佳忆, 等. 漂浮型Ag2CrO4-g-C3N4-TiO2/膨胀珍珠岩可见光催化材料除藻性能[J]. 复合材料学报, 2021, 38(6): 1914-1921. doi: 10.13801/j.cnki.fhclxb.20200928.006
引用本文: 宋靖珂, 王学江, 王佳忆, 等. 漂浮型Ag2CrO4-g-C3N4-TiO2/膨胀珍珠岩可见光催化材料除藻性能[J]. 复合材料学报, 2021, 38(6): 1914-1921. doi: 10.13801/j.cnki.fhclxb.20200928.006
SONG Jingke, WANG Xuejiang, WANG Jiayi, et al. Photocatalytic inactivation of algae using floating visible-light-responsive photocatalyst Ag2CrO4-g-C3N4-TiO2/modified expanded perlite[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1914-1921. doi: 10.13801/j.cnki.fhclxb.20200928.006
Citation: SONG Jingke, WANG Xuejiang, WANG Jiayi, et al. Photocatalytic inactivation of algae using floating visible-light-responsive photocatalyst Ag2CrO4-g-C3N4-TiO2/modified expanded perlite[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1914-1921. doi: 10.13801/j.cnki.fhclxb.20200928.006

漂浮型Ag2CrO4-g-C3N4-TiO2/膨胀珍珠岩可见光催化材料除藻性能

doi: 10.13801/j.cnki.fhclxb.20200928.006
基金项目: 河南师范大学博士科研启动项目(5101219170135);河南师范大学博士后科研经费(5101219470222)
详细信息
    通讯作者:

    王学江,教授,研究方向为水污染控制及资源化利用 E-mail:wangxj@tongji.edu.cn

  • 中图分类号: X524;O643.36;O644.1

Photocatalytic inactivation of algae using floating visible-light-responsive photocatalyst Ag2CrO4-g-C3N4-TiO2/modified expanded perlite

  • 摘要: 以Al2O3改性的膨胀珍珠岩(mEP)为载体,采用溶胶凝胶-浸渍沉积法制备Ag2CrO4-g-C3N4-TiO2/mEP漂浮型可见光催化材料。对制备的光催化材料使用XRD、N2吸附/脱附、FESEM-EDS、XPS和UV-vis DRS等分析方法进行材料表征。实验结果表明,不同的Ag2CrO4含量可对复合催化剂的晶型和比表面积产生影响,过高的Ag2CrO4可在催化剂的表面形成团聚颗粒不利于催化剂对藻细胞的吸附和光催化灭活。以铜绿微囊藻为处理对象,光催化剂中Ag2CrO4/TiO2的理论摩尔比为0.05,初始藻细胞浓度为2.75×106 cells/mL时,单纯暗吸附8 h藻细胞的去除率为10.3%,在吸附和光催化的协同作用下,藻细胞的去除率可达81.88%。光催化除藻过程中起主要作用的为光生空穴h+,该催化剂在重复利用三次后对藻细胞仍有72.19%的去除率,催化剂有较好的稳定性。

     

  • 图  1  TiO2/Al2O3改性膨胀珍珠岩(mEP)、g-C3N4-TiO2/mEP及Ag2CrO4-g-C3N4-TiO2/mEP系列材料的XRD图谱 (a),EP、mEP及Ag2CrO4-g-C3N4-TiO2/mEP系列材料的N2吸附脱附曲线 (b)

    Figure  1.  XRD patterns of TiO2/Al2O3 modified expanded perlite (mEP), g-C3N4-TiO2/mEP and Ag2CrO4-g-C3N4-TiO2/mEP-x% (x=1, 5, 10, 15) (a) , N2 sorption-desorption isotherms of EP, mEP and Ag2CrO4-g-C3N4-TiO2/mEP- x% (x=1, 5, 10, 15) (b)

    图  2  Ag2CrO4与TiO2不同摩尔比的Ag2CrO4-g-C3N4-TiO2/mEP复合材料的FESEM图像

    Figure  2.  FESEM images of Ag2CrO4-g-C3N4-TiO2/mEP with different Ag2CrO4 toTiO2 mole ratios ((a) 1%; (b) 5%; (c) 10%; (d) 15%)

    图  3  Ag2CrO4-g-C3N4-TiO2/mEP-5%的SEM图像 (a)及Ag (b)、Cr (c) 和Ti (d) 的面扫描能谱图

    Figure  3.  SEM image of Ag2CrO4-g-C3N4-TiO2/mEP-5% (a) and element mapping of Ag (b), Cr (c) and Ti (d)

    图  4  Ag2CrO4-g-C3N4-TiO2/mEP-5%的XPS图谱

    Figure  4.  XPS spectra of Ag2CrO4-g-C3N4-TiO2/mEP-5%

    图  5  TiO2/mEP、g-C3N4-TiO2/mEP及Ag2CrO4-g-C3N4-TiO2/mEP系列材料的紫外-可见光吸收光谱

    Figure  5.  UV-vis diffuses reflectance spectra of TiO2/mEP, g-C3N4-TiO2/mEP and Ag2CrO4-g-C3N4-TiO2/mEP-x% (x=1, 5, 10, 15)

    图  6  TiO2/mEP、g-C3N4-TiO2/mEP及Ag2CrO4-g-C3N4-TiO2/mEP系列材料对藻细胞的吸附 (a) 和光催化去除 (b)

    Figure  6.  Comparisons of adsorption (a) and photo-inactivation (b) in solution of algae cells by TiO2/mEP, g-C3N4-TiO2/mEP and Ag2CrO4-g-C3N4-TiO2/mEP-x%(x=1, 5, 10, 15)

    图  7  光催化除藻过程中活性基团分析

    Figure  7.  Effects of different reactive species scavengers on the photocatalytic inactivation of algae under visible-light irradiation

    图  8  Ag2CrO4-g-C3N4-TiO2/mEP-5%光催化剂重复利用性能

    Figure  8.  Changes in the efficiency of Ag2CrO4-g-C3N4-TiO2/mEP-20% for the inactivation of algae in three cycles

    表  1  EP、mEP及Ag2CrO4-g-C3N4-TiO2/mEP系列材料的比表面积、孔径及孔容

    Table  1.   Specific surface area, average pore diameter and total pore volume of EP, mEP and Ag2CrO4-g-C3N4-TiO2/mEP-x%(x=1, 5, 10, 15)

    PhotocatalystSpecific surface area/(m2·g−1)Average pore size/mmTotal pore volume/(cm3·g−1)
    EP 2.3 10.4 0.006
    mEP 66.5 2.5 0.041
    Ag2CrO4-g-C3N4-TiO2/mEP-1% 73.4 3.0 0.055
    Ag2CrO4-g-C3N4-TiO2/mEP-5% 37.2 4.7 0.044
    Ag2CrO4-g-C3N4-TiO2/mEP-10% 33.6 4.1 0.027
    Ag2CrO4-g-C3N4-TiO2/mEP-15% 42.5 3.6 0.033
    下载: 导出CSV
  • [1] SHAO J H, GU J D, PENG L, et al. Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)[J]. Journal of Hazardous Materials,2014,272:83-88. doi: 10.1016/j.jhazmat.2014.03.013
    [2] BRIAND J F, ROBILLOT C, QUIBLIER-LLOBÉRAS C, et al. Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France[J]. Water Research,2002,36(13):3183-3192. doi: 10.1016/S0043-1354(02)00016-7
    [3] GAO Z W, PENG X J, ZHANG H M, et al. Montmorillonite-Cu(II)/Fe(III) oxides magnetic material for removal of cyanobacterial Microcystis aeruginosa and its regeneration[J]. Desalination,2009,247(1-3):337-345. doi: 10.1016/j.desal.2008.10.006
    [4] SUN F, PEI H Y, HU W R, et al. The lysis of Microcystis aeruginosa in AlCl3 coagulation and sedimentation processes[J]. Chemical Engineering Journal,2012,193:196-202.
    [5] DONG C L, CHEN W, LIU C. Flocculation of algal cells by amphoteric chitosan-based flocculant[J]. Bioresource Technology,2014,170:239-247. doi: 10.1016/j.biortech.2014.07.108
    [6] WANG Z P, CHEN Y Q, XIE P C, et al. Removal of Microcystis aeruginosa by UV-activated persulfate: Performance and characteristics[J]. Chemical Engineering Journal,2016,300:245-253. doi: 10.1016/j.cej.2016.04.125
    [7] PINHO L X, AZEVEDO J, BRITO A, et al. Effect of TiO2 photocatalysis on the destruction of microcystis aeruginosa cells and degradation of cyanotoxins microcystin-LR and cylindrospermopsin[J]. Chemical Engineering Journal,2015,268:144-152. doi: 10.1016/j.cej.2014.12.111
    [8] SONG J, WANG X, MA J, et al. Visible-light-driven in situ inactivation of microcystis aeruginosa with the use of floating g-C3N4 heterojunction photocatalyst: Performance, mechanisms and implications[J]. Applied Catalysis B: Environmental,2018,226:83-92. doi: 10.1016/j.apcatb.2017.12.034
    [9] SONG J, WANG X, MA J, et al. Removal of microcystis aeruginosa and microcystin-LR using a graphitic-C3N4/TiO2 floating photocatalyst under visible light irradiation[J]. Chemical Engineering Journal,2018,348:380-388. doi: 10.1016/j.cej.2018.04.182
    [10] RODRIGUEZ-GONZALEZ V, ALFARO S O, TORRES-MARTINEZ L M, et al. Silver-TiO2 nanocomposites: Synthesis and harmful algae bloom UV-photoelimination[J]. Applied Catalysis B-Environmental,2010,98(3-4):229-234. doi: 10.1016/j.apcatb.2010.06.001
    [11] CHEN Y F, HUANG W X, HE D L, et al. Construction of heterostructured g-C3N4/Ag/TiO2 Microspheres with enhanced photocatalysis performance under visible-light irradiation[J]. ACS Applied Materials & Interfaces,2014,6(16):14405-14414.
    [12] WANG X, WANG X, ZHAO J, et al. Efficient visible light-driven in situ photocatalytic destruction of harmful alga by worm-like N, P co-doped TiO2/expanded graphite carbon layer (NPT-EGC) floating composites[J]. Catalysis Science & Technology,2017,7:2335-2346.
    [13] PARK H, PARK Y, KIM W, et al. Surface modification of TiO2 photocatalyst for environmental applications[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2013,15:1-20. doi: 10.1016/j.jphotochemrev.2012.10.001
    [14] ZHOU J, ZHANG M, ZHU Y. Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method[J]. Physical Chemistry Chemical Physics,2015,17(5):3647-3652. doi: 10.1039/C4CP05173D
    [15] ZHANG Y, LU J N, HOFFMANN M R, et al. Synthesis of g-C3N4/Bi2O3/TiO2 composite nanotubes: Enhanced activity under visible light irradiation and improved photoelectrochemical activity[J]. Rsc Advances,2015,5(60):48983-48991. doi: 10.1039/C5RA02750K
    [16] XU D F, CHENG B, WANG W K, et al. Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity[J]. Applied Catalysis B-Environmental,2018,231:368-380. doi: 10.1016/j.apcatb.2018.03.036
    [17] WANG X, WANG X J, ZHAO J F, et al. Adsorption-photocatalysis functional expanded graphite C/C composite for in-situ photocatalytic inactivation of Microcystis aeruginosa[J]. Chemical Engineering Journal,2018,341:516-525. doi: 10.1016/j.cej.2018.02.054
    [18] LI P, SONG Y, YU S. Removal of Microcystis aeruginosa using hydrodynamic cavitation: Performance and mechanisms[J]. Water Research,2014,62:241-248. doi: 10.1016/j.watres.2014.05.052
    [19] HOU Y, ZUO F, MA Q, et al. Ag3PO4 oxygen evolution photocatalyst employing synergistic action of Ag/AgBr nanoparticles and graphene sheets[J]. Journal of Physical Chemistry C,2015,116(38):20132-20139.
    [20] DENG Y, TANG L, ZENG G, et al. Facile fabrication of a direct Z-scheme Ag2CrO4/g-C3N4 photocatalyst with enhanced visible light photocatalytic activity[J]. Journal of Molecular Catalysis A Chemical,2016,421:209-221. doi: 10.1016/j.molcata.2016.05.024
    [21] SOOFIVAND F, MOHANDES F, SALAVATI-NIASARI M. Silver chromate and silver dichromate nanostructures: Sonochemical synthesis, characterization, and photocatalytic properties[J]. Materials Research Bulletin,2013,48(6):2084-2094. doi: 10.1016/j.materresbull.2013.02.025
    [22] WANG X, WANG X J, ZHAO J F, et al. Solar light-driven photocatalytic destruction of cyanobacteria by F-Ce-TiO2/expanded perlite floating composites[J]. Chemical Engineering Journal,2017,320:253-263. doi: 10.1016/j.cej.2017.03.062
    [23] XU H, ZHAO H, SONG Y, et al. g-C3N4/Ag3PO4 composites with synergistic effect for increased photocatalytic activity under the visible light irradiation[J]. Materials Science in Semiconductor Processing,2015,39:726-734. doi: 10.1016/j.mssp.2015.04.013
    [24] MA S, ZHAN S, JIA Y, et al. Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light[J]. Applied Catalysis B: Environmental,2016,186:77-87. doi: 10.1016/j.apcatb.2015.12.051
    [25] WANG X, WANG X J, ZHAO J F, et al. An alternative to in situ photocatalytic degradation of microcystin-LR by worm-like N, P co-doped TiO2/expanded graphite by carbon layer (NPT-EGC) floating composites[J]. Applied Catalysis B: Environmental,2017,206:479-489. doi: 10.1016/j.apcatb.2017.01.046
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1354
  • HTML全文浏览量:  437
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-23
  • 录用日期:  2020-09-24
  • 网络出版日期:  2020-09-29
  • 刊出日期:  2021-06-23

目录

    /

    返回文章
    返回