留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au-Pt纳米颗粒/石墨烯-纤维素微纤维复合电极的制备与电化学性能

黄翠萍 黎杉珊 漆天乐 钟婷婷 陈栎颖 张志清 申光辉

黄翠萍, 黎杉珊, 漆天乐, 等. Au-Pt纳米颗粒/石墨烯-纤维素微纤维复合电极的制备与电化学性能[J]. 复合材料学报, 2021, 38(7): 2274-2283. doi: 10.13801/j.cnki.fhclxb.20200928.005
引用本文: 黄翠萍, 黎杉珊, 漆天乐, 等. Au-Pt纳米颗粒/石墨烯-纤维素微纤维复合电极的制备与电化学性能[J]. 复合材料学报, 2021, 38(7): 2274-2283. doi: 10.13801/j.cnki.fhclxb.20200928.005
HUANG Cuiping, LI Shanshan, QI Tianle, et al. Preparation and electrochemical performance of Au-Pt nanoparticles/graphene-cellulose microfiber composite electrodes[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2274-2283. doi: 10.13801/j.cnki.fhclxb.20200928.005
Citation: HUANG Cuiping, LI Shanshan, QI Tianle, et al. Preparation and electrochemical performance of Au-Pt nanoparticles/graphene-cellulose microfiber composite electrodes[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2274-2283. doi: 10.13801/j.cnki.fhclxb.20200928.005

Au-Pt纳米颗粒/石墨烯-纤维素微纤维复合电极的制备与电化学性能

doi: 10.13801/j.cnki.fhclxb.20200928.005
基金项目: 四川省教育厅2018年度科研项目(18ZB0458);成都市科技项目“食品安全检测与追溯公共服务平台建设应用示范”(2019-YF09-00064)
详细信息
    通讯作者:

    黎杉珊,博士,副教授,硕士生导师,研究方向为食品分析 E-mail:954672922@qq.com

  • 中图分类号: TB333

Preparation and electrochemical performance of Au-Pt nanoparticles/graphene-cellulose microfiber composite electrodes

  • 摘要: 石墨烯和金属纳米是优异的导电纳米材料,为构建具有高效活性表面积的电化学传感界面,以玻碳电极作为导电基底,采用滴涂法结合一步电沉积成功制备了Au-Pt纳米颗粒/还原氧化石墨烯-纤维素微纤维(Au-Pt NPs/RGO-CMF)复合材料。SEM、原子力显微镜(AFM)、EDS和拉曼光谱分析表明,Au-Pt纳米颗粒均匀分布在RGO-CMF的薄层上,同时实现了氧化石墨烯(GO)还原为RGO。以铁氰化钾作为氧化还原探针对界面的电化学性质进行研究,在优化的实验条件下(循环伏安法电沉积:电位为−1.2~0 V,周期为20,电解质pH值为6,滴涂GO-CMF体积为8 μL),得到Au-Pt NPs/RGO-CMF复合材料的高效活性表面积(3.54 cm2)远远优于裸玻碳电极(1.52 cm2)。表明构建界面具有高的电催化活性,为传感器的进一步应用提供理论支持。

     

  • 图  1  Au-Pt纳米颗粒/还原氧化石墨烯-纤维素微纤维(Au-Pt NPs/RGO-CMF)复合膜修饰电极的制备过程

    Figure  1.  Preparation process of Au-Pt nano particles/reduced graphene oxide-cellulose microfiber (Au-Pt NPs/RGO-CMF) composite film modified electrode

    图  2  氧化石墨烯(GO)、GO-CMF、Au NPs/RGO-CMF、Pt NPs/RGO-CMF、Au-Pt NPs/RGO和Au-Pt NPs/RGO-CMF复合膜的SEM图像

    Figure  2.  SEM images of graphene oxide (GO), GO-CMF, Au NPs/RGO-CMF, Pt NPs/RGO-CMF, Au-Pt NPs/RGO and Au-Pt NPs/RGO-CMF composite films

    图  3  GO-CMF和Au-Pt NPs/RGO-CMF复合膜的2D和3D原子力显微镜(AFM)图像

    Figure  3.  2D and 3D atomic force micro-scopy (AFM) images of GO-CMF and Au-Pt NPs/RGO-CMF composite films

    图  4  Au-Pt NPs/RGO-CMF复合膜的SEM图像(a)和EDS图谱(b)

    Figure  4.  SEM image (a) and EDS spectrum (b) of Au-Pt NPs/RGO-CMF composite film

    图  5  GO、GO-CMF和Au-Pt NPs/RGO-CMF复合膜的拉曼光图谱

    Figure  5.  Raman spectra of GO, GO-CMF and Au-Pt NPs/RGO-CMF composite films

    图  6  Au NPs、Pt NPs和Au-Pt NPs/RGO-CMF复合膜修饰玻碳电极(GCE)的循环伏安(CV)曲线(扫描速度为50 mV/s,沉积周期为20)

    Figure  6.  Cyclic voltammetry (CV) curves of Au NPs, Pt NPs and Au-Pt NPs/ RGO-CMF composite films modified glassy carbon electrodes (GCE) (Scanning speed is 50 mV/s, deposition period is 20)

    图  7  不同修饰的GCE电极的CV曲线(a)和电化学阻抗(EIS) (b)图谱(内插图:峰电流Ipa的趋势;CV 扫描速度为0.1 V/s)

    Figure  7.  CV curves (a) and electrochemical impedance spectra (EIS) (b) of different modified electrodes (Inset: Trend of peak current Ipa; CV scanning speed is 0.1 V/s)

    图  8  不同扫描速率下Au-Pt NPs沉积电位(a)、沉积周期(b)、电解质pH值(c)和GO-CMF复合材料的滴涂量(d)对5 mmol/L Fe(CN)63−峰值电流的影响

    Figure  8.  Influence of Au-Pt NPs deposition potential (a), deposition cycle (b), electrolyte pH value (c) and amount of drip coating of GO-CMF composites (d) at different scanning speeds on peak current of 5 mmol/L Fe(CN)63−

    图  9  不同扫描速率下Au-Pt NPs/RGO-CMF复合膜修饰GCE的CV曲线(扫描速率a~g依次为0.05、0.075、0.1、0.125、0.15、0.175、0.2 mV/s) (a);Au-Pt NPs/RGO-CMF复合膜修饰GCE的峰值电流与扫描速率的函数关系(用于计算有效活性表面积) (b)

    Figure  9.  CV curves of Au-Pt NPs/RGO-CMF composite films modified GCE in 0.2 mol/L KCl containing 5 mmol/L Fe(CN)63− at different scanning speeds (Scanning speed a–g are 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2 mV/s) (a); Function relationship between peak current and scan rate of Au-Pt NPs/RGO-CMF composite films modified GCE (Used to calculate effective active surface area) (b)

  • [1] ABERGEL D S L, APALKOV V, BERASHEVICH J, et al. Properties of graphene: a theoretical perspective[J]. Advances in Physics,2010,59(4):261-482. doi: 10.1080/00018732.2010.487978
    [2] BAI X, ZHANG B, LIU M, et al. Molecularly imprinted electrochemical sensor based on polypyrrole/dopamine@graphene incorporated with surface molecularly imprinted polymers thin film for recognition of olaquindox[J]. Bioelectrochemistry,2019,132:107398.
    [3] TEZERJANI M D, BENVIDI A, DEHGHANI FIROUZABADI A, et al. Epinephrine electrochemical sensor based on a carbon paste electrode modified with hydroquinone derivative and graphene oxide nano-sheets: Simultaneous determination of epinephrine, acetaminophen and dopamine[J]. Measurement,2017,101:183-189. doi: 10.1016/j.measurement.2017.01.029
    [4] MARGARYAN N, KOKANYAN N, KOKANYAN E. Low-temperature synthesis and characteristics of fractal graphene layers[J]. Journal of Saudi Chemical Society,2019,23(1):13-20. doi: 10.1016/j.jscs.2018.03.004
    [5] FRITEA L, BĂ NICĂF, COSTEA T O, et al. A gold nanoparticles: Graphene based electrochemical sensor for sensitive determination of nitrazepam[J]. Journal of Electroanalytical Chemistry,2018,830-831:63-71. doi: 10.1016/j.jelechem.2018.10.015
    [6] CUI X, YANG B, ZHAO S, et al. Electrochemical sensor based on ZIF-8@dimethylglyoxime and β-cyclodextrin modified reduced graphene oxide for nickel(II) detection[J]. Sensors and Actuators B: Chemical,2020,315:128091. doi: 10.1016/j.snb.2020.128091
    [7] PALANISAMY S, VELUSAMY V, RAMARAJ S, et al. Facile synthesis of cellulose microfibers supported palladium nanospindles on graphene oxide for selective detection of dopamine in pharmaceutical and biological samples[J]. Materials Science and Engineering C,2019,98:256-265. doi: 10.1016/j.msec.2018.12.112
    [8] VELUSAMY V, PALANISAMY S, CHEN S W, et al. Novel electrochemical synthesis of cellulose microfiber entrapped reduced graphene oxide: A sensitive electrochemical assay for detection of fenitrothion organophosphorus pesticide[J]. Talanta,2019,192:471-477. doi: 10.1016/j.talanta.2018.09.055
    [9] DENG K, LI C, LI X, et al. Simultaneous detection of sunset yellow and tartrazine using the nanohybrid of gold nanorods decorated graphene oxide[J]. Journal of Electroanalytical Chemistry,2016,780:296-302. doi: 10.1016/j.jelechem.2016.09.040
    [10] LEE M H, WANG S Y, CHIANG W H, et al. Platinum nanoparticles decorated graphene nanoribbon with eco-friendly unzipping process for electrochemical sensors[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,96:566-574. doi: 10.1016/j.jtice.2018.11.012
    [11] ESCALONA-VILLALPANDO R A, GURROLA M P, TREJO G, et al. Electrodeposition of gold on oxidized and reduced graphite surfaces and its influence on glucose oxidation[J]. Journal of Electroanalytical Chemistry,2018,816:92-98. doi: 10.1016/j.jelechem.2018.03.037
    [12] LIAN W, LIU S, YU J, et al. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin[J]. Biosensors and Bioelectronics,2012,38(1):163-169. doi: 10.1016/j.bios.2012.05.017
    [13] LIU Y, SHE P, GONG J, et al. A novel sensor based on electrodeposited Au-Pt bimetallic nano-clusters decorated on graphene oxide (GO)-electrochemically reduced GO for sensitive detection of dopamine and uric acid[J]. Sensors and Actuators B: Chemical,2015,221:1542-1553. doi: 10.1016/j.snb.2015.07.086
    [14] ETEYA M M, ROUNAGHI G H, DEIMINIAT B. Fabrication of a new electrochemical sensor based on AuPt bimetallic nanoparticles decorated multi-walled carbon nanotubes for determination of diclofenac[J]. Microchemical Journal,2019,144:254-260. doi: 10.1016/j.microc.2018.09.009
    [15] XU Y, HUANG K, ZHU Z, et al. Effect of glassy carbon, gold, and nickel electrodes on nickel electrocrystallization in an industrial electrolyte[J]. Surface and Coatings Technology,2019,370:1-10. doi: 10.1016/j.surfcoat.2019.04.072
    [16] HUANG Z N, JIAO Z, TENG J, et al. A novel electrochemical sensor based on self-assembled platinum nanochains: Multi-walled carbon nanotubes-graphene nanoparticles composite for simultaneous determination of dopamine and ascorbic acid[J]. Ecotoxicology and Environmental Safety,2019,172:167-175. doi: 10.1016/j.ecoenv.2019.01.091
    [17] 陈文博. 电化学快速检测磺胺类兽药残留研究[D]. 郑州: 河南工业大学, 2016.

    CHEN Wenbo. Study on rapid detection sulfonamides residues based on the electroanalytical method[D]. Zhengzhou: Henan University of Technology, 2016(in Chinese).
    [18] XU Y, ZHANG W, HUANG X, et al. Adsorptive stripping voltammetry determination of hexavalent chromium by a pyridine functionalized gold nanoparticles/three-dimensional graphene electrode[J]. Microchemical Journal,2019,149:104022. doi: 10.1016/j.microc.2019.104022
    [19] XU Y, ZHANG W, SHI J, et al. Electrodeposition of gold nanoparticles and reduced graphene oxide on an electrode for fast and sensitive determination of methylmercury in fish[J]. Food Chemistry,2017,237:423-430. doi: 10.1016/j.foodchem.2017.05.096
    [20] JIA H, DIRICAN M, ZHU J, et al. High-performance SnSb@rGO@CMF composites as anode material for sodium-ion batteries through high-speed centrifugal spinning[J]. Journal of Alloys and Compounds,2018,752:296-302. doi: 10.1016/j.jallcom.2018.04.141
    [21] THONGSAMRIT W, PHROMPET C, MANEESAI K, et al. Effect of grain boundary interfaces on electrochemical and thermoelectric properties of a Bi2Te3/reduced graphene oxide composites[J]. Materials Chemistry and Physics,2020,250:123196. doi: 10.1016/j.matchemphys.2020.123196
    [22] XU Y, GAO M, ZHANG G, et al. Electrochemically reduced graphene oxide with enhanced electrocatalytic activity toward tetracycline detection[J]. Chinese Journal of Catalysis,2015,36(11):1936-1942. doi: 10.1016/S1872-2067(15)60956-1
    [23] 张彩云, 范丽芳, 张国娟, 等. 基于石墨烯/铂纳米粒子复合材料的电化学传感器测定对氨基苯酚[J]. 分析科学学报, 2019, 35(2):139-144.

    ZHANG Caiyun, FAN Lifang, ZHANG Guojuan, et al. An electrochemical sensor platform based on graphene/platinum nanoparticles composite for detection p-aminophenol[J]. Journal of Analytical Science,2019,35(2):139-144(in Chinese).
    [24] GUAN J F, HUANG Z N, ZOU J, et al. A sensitive non-enzymatic electrochemical sensor based on acicular manganese dioxide modified graphene nanosheets composite for hydrogen peroxide detection[J]. Ecotoxicology and Environmental Safety,2020,190:110123. doi: 10.1016/j.ecoenv.2019.110123
    [25] 张吉晔, 陈福义, 闫晓红. 沉积电位对银纳米晶体生长形态的影响[J]. 贵金属, 2011, 32(2):27-31. doi: 10.3969/j.issn.1004-0676.2011.02.006

    ZHANG Jiye, CHEN Fuyi, YAN Xiaohong. Effect of the deposition potential on the nano-silver crystal growth morphology[J]. Precious Metals,2011,32(2):27-31(in Chinese). doi: 10.3969/j.issn.1004-0676.2011.02.006
    [26] SONG Y, MA Y, WANG Y, et al. Electrochemical deposition of gold-platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications[J]. Electrochimica Acta,2010,55(17):4909-4914. doi: 10.1016/j.electacta.2010.03.089
    [27] MARRANI A G, MOTTA A, SCHREBLER R, et al. Insights from experiment and theory into the electrochemical reduction mechanism of graphene oxide[J]. Electrochimica Acta,2019,304:231-238. doi: 10.1016/j.electacta.2019.02.108
    [28] GUO H, SU Y, SHEN Y, et al. In situ decoration of Au nanoparticles on carbon nitride using a single-source precursor and its application for the detection of tetracycline[J]. Journal of Colloid and Interface Science,2019,536:646-654. doi: 10.1016/j.jcis.2018.10.104
    [29] NAZARPOUR S, HAJIAN R, SABZVARI M H. A novel nanocomposite electrochemical sensor based on green synthesis of reduced graphene oxide/gold nanoparticles modified screen printed electrode for determination of tryptophan using response surface methodology approach[J]. Microchemical Journal,2020,154:104634. doi: 10.1016/j.microc.2020.104634
  • 加载中
图(9)
计量
  • 文章访问数:  1106
  • HTML全文浏览量:  379
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-20
  • 录用日期:  2020-09-21
  • 网络出版日期:  2020-09-29
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回