留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机支架结构对丁苯橡胶/乙烯-醋酸乙烯共聚物复合发泡材料性能的影响

姬占有 马建中 王慧迪 马忠雷 邵亮

姬占有, 马建中, 王慧迪, 等. 有机支架结构对丁苯橡胶/乙烯-醋酸乙烯共聚物复合发泡材料性能的影响[J]. 复合材料学报, 2021, 38(7): 2123-2131. doi: 10.13801/j.cnki.fhclxb.20200928.001
引用本文: 姬占有, 马建中, 王慧迪, 等. 有机支架结构对丁苯橡胶/乙烯-醋酸乙烯共聚物复合发泡材料性能的影响[J]. 复合材料学报, 2021, 38(7): 2123-2131. doi: 10.13801/j.cnki.fhclxb.20200928.001
JI Zhanyou, MA Jianzhong, WANG Huidi, et al. Effect of organic scaffold structure on properties of styrene butadiene rubber/ ethylene vinyl acetate composite foams[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2123-2131. doi: 10.13801/j.cnki.fhclxb.20200928.001
Citation: JI Zhanyou, MA Jianzhong, WANG Huidi, et al. Effect of organic scaffold structure on properties of styrene butadiene rubber/ ethylene vinyl acetate composite foams[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2123-2131. doi: 10.13801/j.cnki.fhclxb.20200928.001

有机支架结构对丁苯橡胶/乙烯-醋酸乙烯共聚物复合发泡材料性能的影响

doi: 10.13801/j.cnki.fhclxb.20200928.001
基金项目: 咸阳市重大科技专项计划(2018k01-46);西安市科技计划项目(2019216514GXRC001CG002-GXYD1.2);陕西省教育厅服务地方专项计划项目(19JC003)
详细信息
    通讯作者:

    马建中,教授,博士生导师,研究方向为有机/无机纳米复合材料的关键技术 E-mail:majz@sust.edu.cn

    邵亮,副教授,硕士生导师,研究方向为聚合物纳米复合发泡材料的设计与应用 E-mail:shaoliang@sust.edu.cn

  • 中图分类号: TB324

Effect of organic scaffold structure on properties of styrene butadiene rubber/ ethylene vinyl acetate composite foams

  • 摘要: 为提高橡胶发泡材料尺寸稳定性及实现其广泛的工业化应用,基于硫磺和过氧化二异丙苯的交联体系,通过机械共混的方式,以具有结晶性的乙烯-醋酸乙烯共聚物(EVA)构筑有机支架结构,制备了高尺寸稳定性的丁苯橡胶(SBR)/EVA复合发泡材料。研究了不同醋酸乙烯(VA)含量的EVA对SBR/EVA复合材料结晶性、相容性、泡孔形貌、尺寸稳定性和力学性能的影响规律,并探明了EVA结晶区作为有机支架结构的抗收缩机制。结果表明:不同VA含量EVA的SBR/EVA复合材料都具有良好的发泡行为。高结晶度的EVA (VA含量为18%)使SBR/EVA复合发泡材料的收缩率减小至4.7%,硬度和压缩强度(60%)分别增加到70 Shore C和22 MPa。

     

  • 图  1  不同醋酸乙烯(VA)含量的乙烯-醋酸乙烯共聚物(EVA)对丁苯橡胶(SBR)/EVA复合材料结晶行为的影响: (a) DSC曲线; (b) XRD图谱

    Figure  1.  Effect of ethylene vinyl acetate (EVA) with different vinyl ester (VA) content on crystallization behavior of styrene butadiene rubber (SBR)/EVA composite foams: (a) DSC curves; (b) XRD patterns

    图  2  不同VA含量EVA的SBR/EVA复合材料截面的SEM和超景深3D显微镜图像

    Figure  2.  SEM and ultra-depth 3D images of cross-sectioned SBR/EVA composites with different VA content EVA

    图  3  不同VA含量EVA的SBR/EVA复合发泡材料的截面泡孔结构的SEM图像

    Figure  3.  SEM images of cross-sectioned cell structure of SBR/EVA composite foams with different VA content EVA

    图  4  不同VA含量EVA的SBR/EVA复合发泡材料的平均泡孔尺寸和泡孔密度

    Figure  4.  Mean cell size and cell density of SBR/EVA composite foams with different VA content EVA

    图  5  不同VA含量的EVA对SBR/EVA复合发泡材料尺寸稳定性的影响: (a)收缩率; (b)后收缩率

    Figure  5.  Effect of EVA with different VA content on dimensional stability of SBR/EVA composite foams: (a) Shrinkage; (b) Post shrinkage

    图  6  EVA结晶区作为有机支架结构的抗收缩机制

    Figure  6.  Anti-shrinkage mechanism of organic scaffold structure for EVA crystalline region

    图  7  SBR/EVA复合发泡材料的物理和力学性能: (a)密度; (b)硬度; (c)应力-应变曲线; (d)压缩应力-应变(60%)曲线

    Figure  7.  Physical and mechanical properties of SBR/EVA composite foams: (a) Density; (b) Hardness; (c) Stress-strain curves; (d) Compressive stress-strain (60%) curves

    表  1  不同VA含量EVA的SBR/EVA复合材料的结晶行为

    Table  1.   Crystallization behavior of SBR/EVA composites with different VA content EVA

    VA content/%ΔHf/(J·g−1)Tm1/℃Tm2/℃χc/%
    18 524.8 50.1 89.4 8.15
    26 128.4 52.4 73.9 1.99
    28 107.3 50.3 75.3 1.67
    33 79.7 48.5 66.0 1.24
    40 72.3 48.3 1.12
    Notes: ΔHf —Enthalpy of melting; Tm1, Tm2—Melting temperature; χc—Crystallinity.
    下载: 导出CSV

    表  2  VA含量为18%的SBR/EVA复合发泡材料与其他发泡材料的物理和力学性能对比[34-41]

    Table  2.   Comparison of physical and mechanical properties between SBR/EVA composite foam with VA content of 18% and other foam materials[34-41]

    MaterialDensity/(g·cm−3)Shrinkage/%Tensile/MPaElongation/%Reference
    EVA/MWCNT 0.15 3.83 251 [34]
    EVA/POE 0.18 2.66 268 [35]
    EVA/CPE 0.12 7.2 1.05 200 [36]
    EVA/TPU 0.15 2.50 244 [37]
    BR/SBR/NR 0.89±0.006 11.10±0.3 538±18 [38]
    EPDM 0.29 2.44 626 [39]
    CPE 1.93 269 [40]
    SBS/SBR/PS 0.20 5.0 0.92 270 [41]
    SBR/EVA 0.47±0.03 4.7±0.35 3.15±0.17 642±5.52 This work
    Notes: MWCNT—Multiwalled carbon nanotube; POE—Polyolefin thermoplastic elastomer; CPE—Chlorinated polyethylene rubber; TPU—Thermoplastic polyurethane; BR—Butadiene rubber; NR—Nature rubber; EPDM—Ethylene-propylene-diene monomer; SBS—Styrene-butadiene-styrene block copolymer; PS—Polystyrene.
    下载: 导出CSV
  • [1] SAI H, TAN K W, HUR K, et al. Hierarchical porous polymer scaffolds from block copolymers[J]. Science,2013,341(6145):530-534. doi: 10.1126/science.1238159
    [2] XIANG B, DENG Z, ZANG F, et al. Microcellular silicone rubber foams: The influence of reinforcing agent on cellular morphology and nucleation[J]. Polymer Engineering and Science,2019,59(1):5-14. doi: 10.1002/pen.24857
    [3] XU Y, ZHANG S, PENG X, et al. Fabrication and mechanism of poly(butylene succinate) urethane ionomer microcellular foams with high thermal insulation and compressive feature[J]. European Polymer Journal,2018,99:250-258. doi: 10.1016/j.eurpolymj.2017.12.032
    [4] VAHIDIFAR A, ESMIZASEH E, ROSTAMI E, et al. Morphological, rheological, and mechanical properties of hybrid elastomeric foams based on natural rubber, nanoclay and nanocarbon black[J]. Polymer Composites,2019,40(11):4289-4299. doi: 10.1002/pc.25290
    [5] CHEN L, SCHADLER L S, OZISIK R. An experimental and theoretical investigation of the compressive properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite foams[J]. Polymer,2011,52(13):2899-2909. doi: 10.1016/j.polymer.2011.04.050
    [6] NOFAR M, AMELI A, PARK C B. Development of polylactide bead foams with double crystal melting peaks[J]. Polymer,2015,69:83-94. doi: 10.1016/j.polymer.2015.05.048
    [7] SHRUDIN R W B, OHSHIMA M. Preparation of microcellular thermoplastic elastomer foams from polystyrene-b-ethylene-butylene-b-polystyrene (SEBS) and their blends with polystyrene[J]. Journal of Applied Polymer Science,2013,128(4):1-10.
    [8] SHAO L, JI Z Y, MA Z, et al. The synergy of double cross-linking agents on the properties of styrene butadiene rubber foams[J]. Scientific Reports,2016,6:36931. doi: 10.1038/srep36931
    [9] JI Z, MA J, QIN X, et al. Improved dimensional stability of styrene butadiene rubber/ethylene vinyl acetate composite foams with skeleton support structure based on alternately cross-linking process[J]. Polymer,2018,157:103-110. doi: 10.1016/j.polymer.2018.10.028
    [10] PHIRI M, SIBEKO M A, PHIRI M J, et al. Effect of free foaming and pre-curing on the thermal, morphological and physical properties of reclaimed tyre rubber foam composites[J]. Journal of Cleaner Production,2019,218(1):65-672.
    [11] GARANCHER J P, FERNYHOUGH A. Expansion and dimensional stability of semi-crystalline polylactic acid foams[J]. Polymer Degradation and Stability,2014,100:21-28. doi: 10.1016/j.polymdegradstab.2013.12.037
    [12] KAIRYT A, JELIS S. Evaluation of forming mixture composition impact on properties of water blown rigid polyurethane (PUR) foam from rapeseed oil polyol[J]. Industrial Crops and Products,2015,66:210-215. doi: 10.1016/j.indcrop.2014.12.032
    [13] HOSSIENY N J, BSRZEGARI M R, NOFARM, et al. Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams[J]. Polymer,2014,55(2):651-662. doi: 10.1016/j.polymer.2013.12.028
    [14] ZHANG R, HUANG K, HU S, et al. Improved cell morphology and reduced shrinkage ratio of ETPU beads by reactive blending[J]. Polymer Testing,2017,63:38-46. doi: 10.1016/j.polymertesting.2017.08.007
    [15] JAMEL M M, KHOSHNOUD P, GUNASHEKARS, et al. Effect of E-glass fibers and phlogopite mica on the mechanical properties and dimensional stability of rigid PVC foams[J]. Polymer-Plastics Technology and Engineering,2015,54(15):1560-1570. doi: 10.1080/03602559.2015.1010222
    [16] JAMEL M M, KHOSHNOUD P, GUNASHEKAR S, et al. Mechanical properties and dimensional stability of rigid PVC foam composites filled with high aspect ratio phlogopite mica[J]. Journal of Minerals and Materials Characterization and Engineering,2015,3(4):237-247. doi: 10.4236/jmmce.2015.34026
    [17] KWON M J, LIM D H, CHOI I C, et al. Preparation and properties of ethylene-vinyl acetate copolymer-based blend foams[J]. Journal of Elastomers and Plastics,2021,53(1):68-82. doi: 10.1177/0095244319900375
    [18] ZHANG B S, ZHANG Z X, LV X F, et al. Properties of chlorinated polyethylene rubber/ethylene vinyl acetate copolymer blend-based foam[J]. Polymer Engineering and Science,2011,52(1):218-224.
    [19] WANG L, LANG F, DU F, et al. Zinc dimethacrylate-reinforced thermoplastic vulcanizates based on chlorinated polyethylene rubber/ethylene-vinyl acetate copolymer[J]. Journal of Macromolecular Science Part B: Physics,2013,52(1):178-189. doi: 10.1080/00222348.2012.695655
    [20] HE Y X, MA J Z, LI Z, et al. Preparation and characterization of graft copolymer EVA-g-PU[J]. Polymer Plastics Technology and Engineering,2008,47(12):1214-1219. doi: 10.1080/03602550802497123
    [21] MA J Z, DUAN Z, XUE C, et al. Morphology and mechanical properties of EVA/OMMT nanocomposite foams[J]. Journal of Thermoplastic Composite Materials,2013,26(4):555-569. doi: 10.1177/0892705712458943
    [22] DUAN Z. Foamed materials from POE/EVA blends[J]. Journal of Functional Biomaterials,2012,43(4):508-511.
    [23] ZHAO Y F, XIAO M, WANG S J, et al. Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites[J]. Composites Science and Technology,2007,67(11):2528-34.
    [24] SHIEH Y T, LIN Y G. Equilibrium solubility of CO2 in rubbery EVA over a wide pressure range: Effects of carbonyl group content and crystallinity[J]. Polymer,2002,43(6):1849-56. doi: 10.1016/S0032-3861(01)00776-5
    [25] LIU S, EIJKELENKAMP R, DUVIGNEAU J, et al. Silica-assisted nucleation of polymer foam cells with nanoscopic dimensions: Impact of particle size, line tension, and surface functionality[J]. ACS Applied Materials and Interfaces,2017,9(43):37929-37940. doi: 10.1021/acsami.7b11248
    [26] LIU S, YIN S, DUVIGNEAU J, et al. Bubble seeding nanocavities: Multiple polymer foam cell nucleation by polydimethylsiloxane-grafted designer silica nanoparticles[J]. ACS Nano,2020,14(2):1623-1634. doi: 10.1021/acsnano.9b06837
    [27] LIU S, PANDEY A, DUVIGNEAU J, et al. Size-dependent submerging of nanoparticles in polymer melts: Effect of line tension[J]. Macromolecules,2018,51:2411−2417.
    [28] 王旭, 常素芹, 冯钠, 等. 不同发泡剂及工艺条件对BR/SBR/NR发泡材料相结构及尺寸稳定性的影响[J]. 弹性体, 2013, 23(1):58-64. doi: 10.3969/j.issn.1005-3174.2013.01.015

    WANG Xu, CHANG Suqin, FENG Na, et al. Effect of blowing agents and process technology on morphology and dimensional stability of BR/SBR/NR foams[J]. China Elastomeric,2013,23(1):58-64(in Chinese). doi: 10.3969/j.issn.1005-3174.2013.01.015
    [29] 金雪华, 司朗诵, 朱旭, 等. 发泡剂对聚氨酯硬泡保温塑料低温尺寸稳定性的研究[J]. 化工技术与开发, 2010, 39(5):13-15, 20. doi: 10.3969/j.issn.1671-9905.2010.05.005

    JIN Xuehua, SI Langsong, ZHU Xu, et al. Effect of blowing agent on dimensional stability of polyurethane foam insulation plastic[J]. Technology and Development of Chemical Industry,2010,39(5):13-15, 20(in Chinese). doi: 10.3969/j.issn.1671-9905.2010.05.005
    [30] 董懿嘉, 孙才英. 玉米秸秆粉对硬质聚氨酯泡沫尺寸稳定性的影响研究[J]. 化工新型材料, 2017, 45(1):194-196.

    DONG Yijia, SUN Caiying. Influence of corn straw powders on the dimentional stability of RPUF[J]. New Chemical Materials,2017,45(1):194-196(in Chinese).
    [31] 中国国家标准化管理委员会. 软质泡沫聚合材料拉伸强度和断裂伸长率的测定: GB/T 6344—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Flexible cellular polymeric materials: Determination of tensile strength and elongation at break: GB/T 6344—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [32] 中国国家标准化管理委员会. 软质泡沫聚合材料模压和挤出海绵胶制品/成品的压缩性能试验: GB/T 20467—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Flexible cellular polymeric materials moulded and extruded sponge or expanded cellular rubber prodcuts Compressibility test on finished parts: GB/T 20467—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [33] MA Z L, ZHANG G C, YANG Q, et al. Tailored morphologies and properties of high-performance microcellular poly(phenylene sulfide)/poly(ether sulfones) (PPS/PEEK) blends[J]. Journal of Supercritical Fluids,2018,132(40):116-128.
    [34] PARK K W, KIM G H. Ethylene vinyl acetate copolymer (EVA)/multiwalled carbon nanotube (MWCNT) nanocomposite foams[J]. Journal of Applied Polymer Science,2009,112(3):1845-1849. doi: 10.1002/app.29736
    [35] DENG F Q, MA J Z, XUE C H, et al. Foamed materials from POE/EVA blends[J]. Journal of Functional Materials,2012,43(4):508-511.
    [36] ZHANG B S, ZHANG Z X, LV X F, et al. Properties of chlorinated polyethylene rubber/ethylene vinyl acetate copolymer blend-based foam[J]. Polymer Engineering and Science,2012,52(1):218-224. doi: 10.1002/pen.22071
    [37] MA J Z, SHAO L, XUE C H, et al. Compatibilization and properties of ethylene vinyl acetate copolymer (EVA) and thermoplastic polyurethane (TPU) blend-based foam[J]. Polymer Bulletin,2014,71(9):2219-2234. doi: 10.1007/s00289-014-1183-5
    [38] WANG X, FENG N, CHANG S. Effect of precured degrees on morphology, thermal, and mechanical properties of BR/SBR/NR foams[J]. Polymer Composites,2013,34(6):849-859. doi: 10.1002/pc.22489
    [39] LEE K, CHANG Y W, KIM S W. Ethylene-propylene-diene terpolymer/halloysite nanocomposites: Thermal, mechanical properties, and foam processing[J]. Journal of Applied Polymer Science,2014,131(11):2928-2935.
    [40] ZHANG B S, LV X F, ZHANG Z X, et al. Effect of carbon black content on microcellular structure and physical properties of chlorinated polyethylene rubber foams[J]. Materials and Design,2010,31(6):3106-3110. doi: 10.1016/j.matdes.2009.12.041
    [41] SHIH R S, KUO S W, CHANG F C. Thermal and mechanical properties of microcellular thermoplastic SBS/PS/SBR blend: Effect of crosslinking[J]. Polymer,2011,52(3):752-759. doi: 10.1016/j.polymer.2010.12.026
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  883
  • HTML全文浏览量:  382
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 录用日期:  2020-09-24
  • 网络出版日期:  2020-09-28
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回