留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿热环境对CFRP复合材料-铝合金螺栓连接结构静力失效的影响

张娇蕊 山美娟 黄伟 赵丽滨

张娇蕊, 山美娟, 黄伟, 等. 湿热环境对CFRP复合材料-铝合金螺栓连接结构静力失效的影响[J]. 复合材料学报, 2021, 38(7): 2224-2233. doi: 10.13801/j.cnki.fhclxb.20200927.002
引用本文: 张娇蕊, 山美娟, 黄伟, 等. 湿热环境对CFRP复合材料-铝合金螺栓连接结构静力失效的影响[J]. 复合材料学报, 2021, 38(7): 2224-2233. doi: 10.13801/j.cnki.fhclxb.20200927.002
ZHANG Jiaorui, SHAN Meijuan, HUANG Wei, et al. Effects of hygrothermal environment on quasi-static failure of CFRP composite-aluminum alloy bolted joints[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2224-2233. doi: 10.13801/j.cnki.fhclxb.20200927.002
Citation: ZHANG Jiaorui, SHAN Meijuan, HUANG Wei, et al. Effects of hygrothermal environment on quasi-static failure of CFRP composite-aluminum alloy bolted joints[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2224-2233. doi: 10.13801/j.cnki.fhclxb.20200927.002

湿热环境对CFRP复合材料-铝合金螺栓连接结构静力失效的影响

doi: 10.13801/j.cnki.fhclxb.20200927.002
基金项目: 国家自然科学基金(11702012;11772028;11872131;U1864208)
详细信息
    通讯作者:

    赵丽滨,博士,教授,博士生导师,研究方向为计算固体力学、结构力学分析及优化设计、复合材料结构力学等 E-mail:lbzhao@buaa.edu.cn

  • 中图分类号: TB332

Effects of hygrothermal environment on quasi-static failure of CFRP composite-aluminum alloy bolted joints

  • 摘要: 湿热环境对碳纤维增强树脂(CFRP)复合材料-铝合金螺栓连接结构失效的显著影响给整体结构带来了安全隐患。为准确评估湿热环境对混合螺栓连接静力失效的影响,基于复合材料渐进损伤模型及金属韧性断裂准则,建立了考虑湿热效应的复合材料-金属螺栓连接静力失效预测模型。采用该模型预测了CFRP复合材料-铝合金单钉双剪连接结构在23℃干态、70℃平衡吸湿状态下的静强度和失效模式,与试验结果吻合良好,验证了模型的有效性。在此基础上,进一步揭示了不同湿热工况对CFRP复合材料-铝合金单钉双剪、多钉双剪连接结构静力拉伸失效的影响规律。结果表明:相比于23℃干态条件,23℃平衡吸湿条件、70℃干态条件和70℃平衡吸湿条件下CFRP复合材料-铝合金单钉双剪连接结构的失效载荷分别下降了4.5%、7.2%和13.9%;高温是导致湿热环境中CFRP复合材料层板损伤区域增大的主要因素;随着螺栓数目的增加,70℃平衡吸湿状态时连接结构静强度相比于23℃干态的下降幅度逐渐降低。

     

  • 图  1  典型金属应力-应变响应曲线[17]

    Figure  1.  Typical stress-strain response curve of metal[17]

    图  2  T800碳纤维/X850环氧树脂复合材料-铝合金单钉双剪连接示意图

    Figure  2.  Schematic diagram of T800 carbon fiber/X850 epoxy composite-aluminum alloy single-bolt double-lap joint

    图  3  7050/T7451铝合金应力-应变曲线

    Figure  3.  Stress-strain curves of 7050-T7451 aluminum alloy

    图  4  T800/X850复合材料-铝合金单钉双剪连接有限元模型

    Figure  4.  Finite element model of T800/X850 composite-aluminum single-bolt double-lap joint

    图  5  T800/X850复合材料-铝合金单钉双剪连接结构载荷-位移曲线预测与试验结果对比

    Figure  5.  Comparisons between numerical and experimental load-displacement curves of T800/X850 composite-aluminum single-bolt double-lap joints

    图  6  连接结构的碳纤维增强树脂(CFRP)复合材料层合板最终失效形式

    Figure  6.  Numerical and experimental failure patterns of carbon fiber reinforced polymer (CFRP) composite laminates in bolted joints

    图  7  四种湿热工况T800/X850复合材料-铝合金单钉双剪连接结构载荷-位移曲线对比

    Figure  7.  Comparisons between load-displacement curves of T800/X850 composite-aluminum alloy single-bolt double-lap joints under four hygrothermal environments

    RTW—23℃/wet condition; ETD—70℃/dry condition

    图  8  湿热环境对T800/X850复合材料-铝合金单钉双剪连接结构拉伸失效载荷影响

    Figure  8.  Effects of hygrothermal environments on tensile failure load of T800/X850 composite-aluminum single-bolt double-lap joints

    图  9  CFRP复合材料层合板在四种湿热环境下的损伤扩展过程

    Figure  9.  Damage propagations of CFRP composite laminate under four hygrothermal environments

    图  10  T800/X850复合材料-铝合金连接结构示意图

    Figure  10.  Schematic diagram of T800/X850 composite-aluminum alloy joints

    图  11  湿热环境对T800/X850复合材料-铝合金多钉连接结构拉伸失效载荷影响

    Figure  11.  Effects of hygrothermal environments on tensile failure load of T800/X850 composite-aluminum alloy multi-bolt joints

    图  12  多钉连接结构中CFRP复合材料层合板在两种湿热环境下的最终失效形式

    Figure  12.  Failure patterns of CFRP composite laminate in multi-bolt joints under two hygrothermal environments

    表  1  复合材料失效准则

    Table  1.   Failure criteria of composites

    Failure modeFailure criteria
    Matrix tension (MT) ($ {\sigma }_{22}>0$) $ {\left(\dfrac{{\sigma }_{\rm{22}}}{{Y}_{\rm{T}}^{\rm{ht}}}\right)}^{2}+{\left(\dfrac{{\tau }_{\rm{12}}}{{S}_{12}^{\rm{ht}}}\right)}^{2}+{\left(\dfrac{{\tau }_{\rm{23}}}{{S}_{23}^{\rm{ht}}}\right)}^{2}\geqslant 1$
    Matrix compression (MC) ($ {\sigma }_{22}<0$) $ {\left(\dfrac{{\sigma }_{\rm{22}}}{{Y}_{\rm{C}}^{\rm{ht}}}\right)}^{2}+{\left(\dfrac{{\tau }_{\rm{12}}}{{S}_{12}^{\rm{ht}}}\right)}^{2}+{\left(\dfrac{{\tau }_{\rm{23}}}{{S}_{23}^{\rm{ht}}}\right)}^{2}\geqslant 1$
    Fiber tension (FT) ($ {\sigma }_{11}>0$) $ {\left(\dfrac{{\sigma }_{\rm{11}}}{{X}_{\rm{T}}^{\rm{ht}}}\right)}^{2}+{\left(\dfrac{{\tau }_{\rm{12}}}{{S}_{12}^{\rm{ht}}}\right)}^{2}+{\left(\dfrac{{\tau }_{\rm{13}}}{{S}_{13}^{\rm{ht}}}\right)}^{2}\geqslant 1$
    Fiber compression (FC) ($ {\sigma }_{11}<0$) $ {\left(\dfrac{{\sigma }_{\rm{11}}}{{X}_{\rm{C}}^{\rm{ht}}}\right)}^{2}\geqslant 1$
    Fiber-matrix shear-out (FMS) ($ {\sigma }_{11}<0$) $ {\left(\dfrac{{\sigma }_{\rm{11}}}{{X}_{\rm{C}}^{\rm{ht}}}\right)}^{2}+{\left(\dfrac{{\tau }_{\rm{12}}}{{S}_{12}^{\rm{ht}}}\right)}^{2}+{\left(\dfrac{{\tau }_{\rm{13}}}{{S}_{13}^{\rm{ht}}}\right)}^{2}\geqslant 1$
    Interlaminar tension (IT) ($ {\sigma }_{33}>0$) $ {\left(\dfrac{{\sigma }_{\rm{33}}}{{Z}_{\rm{T}}^{\rm{ht}}}\right)}^{2}+{\left(\dfrac{{\tau }_{\rm{13}}}{{S}_{13}^{\rm{ht}}}\right)}^{2}+{\left(\dfrac{{\tau }_{\rm{23}}}{{S}_{23}^{\rm{ht}}}\right)}^{2}\geqslant 1$
    Interlaminar compression (IC) ($ {\sigma }_{33}<0$) $ {\left(\dfrac{{\sigma }_{\rm{33}}}{{Z}_{\rm{C}}^{\rm{ht}}}\right)}^{2}+{\left(\dfrac{{\tau }_{\rm{13}}}{{S}_{13}^{\rm{ht}}}\right)}^{2}+{\left(\dfrac{{\tau }_{\rm{23}}}{{S}_{23}^{\rm{ht}}}\right)}^{2}\geqslant 1$
    Notes: $ {\sigma }_{ij}$,$ {\tau }_{ij}$(1≤ij≤3)—Stress components on material coordinate system; Superscript “ht”—Mechanical properties at ETW condition; $ {X}_{\rm{T}}$—Longitudinal tensile strength; $ {X}_{\rm{C}}$—Longitudinal compressive strength; $ {Y}_{\rm{T}}$,$ {Z}_{\rm{T}}$—Transverse tensile strengths; $ {Y}_{\rm{C}}$,$ {Z}_{\rm{C}}$—Transverse compressive strengths; $ {S}_{12}$—In-plane shear strength; $ {S}_{13}$,$ {S}_{23}$—Out-of-plane shear strengths.
    下载: 导出CSV

    表  2  基于细观力学的材料退化模型[16]

    Table  2.   Micromechanics-based material degradation model[16]

    Failure modeMaterial degradation rule
    MT $ {E}_{\rm{22}}^{\rm{d}}={d}_{\rm{mt}}{E}_{\rm{22}}^{\rm{ht}}$,$ {G}_{\rm{12}}^{\rm{d}}={d}_{\rm{mt}}{G}_{\rm{12}}^{\rm{ht}}$,$ {G}_{\rm{23}}^{\rm{d}}={d}_{\rm{mt}}{G}_{\rm{23}}^{\rm{ht}}$,$ {\nu }_{\rm{12}}^{\rm{d}}={d}_{\rm{mt}}{\nu }_{\rm{12}}^{\rm{ht}}$,$ {\nu }_{\rm{23}}^{\rm{d}}={d}_{\rm{mt}}{\nu }_{\rm{23}}^{\rm{ht}}$
    MC $ {E}_{\rm{22}}^{\rm{d}}={d}_{\rm{mc}}{E}_{\rm{22}}^{\rm{ht}}$,$ {G}_{\rm{12}}^{\rm{d}}={d}_{\rm{mc}}{G}_{\rm{12}}^{\rm{ht}}$,$ {G}_{\rm{23}}^{\rm{d}}={d}_{\rm{mc}}{G}_{\rm{23}}^{\rm{ht}}$,$ {\nu }_{\rm{12}}^{\rm{d}}={d}_{\rm{mc}}{\nu }_{\rm{12}}^{\rm{ht}}$,$ {\nu }_{\rm{23}}^{\rm{d}}={d}_{\rm{mc}}{\nu }_{\rm{23}}^{\rm{ht}}$
    FT $ {E}_{\rm{11}}^{\rm{d}}\rm{\hspace{0.17em}}={d}_{\rm{ft}}{E}_{\rm{11}}^{\rm{ht}}$
    FC $ {E}_{\rm{11}}^{\rm{d}}={d}_{\rm{fc}}{E}_{\rm{11}}^{\rm{ht}}$
    FMS $ {G}_{\rm{12}}^{\rm{d}}={d}_{\rm{fm1}}{G}_{\rm{12}}^{\rm{ht}}$,$ {G}_{\rm{13}}^{\rm{d}}={d}_{\rm{fm1}}{G}_{\rm{13}}^{\rm{ht}}$,$ {G}_{\rm{23}}^{\rm{d}}={d}_{\rm{fm2}}{G}_{\rm{23}}^{\rm{ht}}$,$ {\nu }_{\rm{12}}^{\rm{d}}={d}_{\rm{fm1}}{\nu }_{\rm{12}}^{\rm{ht}}$,$ {\nu }_{\rm{13}}^{\rm{d}}={d}_{\rm{fm1}}{\nu }_{\rm{13}}^{\rm{ht}}$,$ {\nu }_{\rm{23}}^{\rm{d}}={d}_{\rm{fm2}}{\nu }_{\rm{23}}^{\rm{ht}}$
    IT $ {E}_{\rm{33}}^{\rm{d}}={d}_{\rm{dt}}{E}_{\rm{33}}^{\rm{ht}}$,$ {G}_{\rm{13}}^{\rm{d}}={d}_{\rm{dt}}{G}_{\rm{13}}^{\rm{ht}}$,$ {G}_{\rm{23}}^{\rm{d}}={d}_{\rm{dt}}{G}_{\rm{23}}^{\rm{ht}}$,$ {\nu }_{\rm{13}}^{\rm{d}}={d}_{\rm{dt}}{\nu }_{\rm{13}}^{\rm{ht}}$,$ {\nu }_{\rm{23}}^{\rm{d}}={d}_{\rm{dt}}{\nu }_{\rm{23}}^{\rm{ht}}$
    IC $ {E}_{\rm{33}}^{\rm{d}}={d}_{\rm{dc}}{E}_{\rm{33}}^{\rm{ht}}$,$ {G}_{\rm{13}}^{\rm{d}}={d}_{\rm{dc}}{G}_{\rm{13}}^{\rm{ht}}$,$ {G}_{\rm{23}}^{\rm{d}}={d}_{\rm{dc}}{G}_{\rm{23}}^{\rm{ht}}$,$ {\nu }_{\rm{13}}^{\rm{d}}={d}_{\rm{dc}}{\nu }_{\rm{13}}^{\rm{ht}}$,$ {\nu }_{\rm{23}}^{\rm{d}}={d}_{\rm{dc}}{\nu }_{\rm{23}}^{\rm{ht}}$
    Notes: Superscript “d”—Degraded mechanical properties; Superscript “ht”—Mechanical properties at ETW condition; $ {E}_{11}$—Longitudinal modulus; $ {E}_{22}$,$ {E}_{33}$—Transverse moduli; $ {G}_{12}$—In-plane shear modulus; $ {G}_{13}$,$ {G}_{23}$—Out-of-plane shear moduli; $ {\nu }_{12}$—Major Poisson’s ratio; $ {\nu }_{13}$,$ {\nu }_{23}$—Through thickness Poisson’s ratios; $ {d}_{i}$(i=ft,fc,mt,mc,dt,dc,fm1,fm2) are degradation factors.
    下载: 导出CSV

    表  3  T800/X850复合材料23℃干态(RTD)力学性能[12]

    Table  3.   Mechanical properties of T800/X850 composites under 23℃/dry (RTD) condition[12]

    Elastic constantValueStrengthValue
    $ {E}_{11}^{\rm{0}}$/GPa 163.5 $ {X}_{\rm{T}}^{\rm{0}}$/MPa 2992
    $ {E}_{22}^{\rm{0}}$=$ {E}_{33}^{\rm{0}}$/GPa 9 $ {X}_{\rm{C}}^{\rm{0}}$/MPa 1183
    $ {G}_{12}^{\rm{0}}$=$ {G}_{13}^{\rm{0}}$/GPa 4.14 $ {Y}_{\rm{T}}^{\rm{0}}$=$ {Z}_{\rm{T}}^{\rm{0}}$/MPa 70.6
    $ {G}_{23}^{\rm{0}}$/GPa 3.08 $ {Y}_{\rm{C}}^{\rm{0}}$=$ {Z}_{\rm{C}}^{\rm{0}}$/MPa 278
    $ {\nu }_{12}^{\rm{0}}$=$ {\nu }_{13}^{\rm{0}}$ 0.32 $ {S}_{12}^{\rm{0}}$=$ {S}_{13}^{\rm{0}}$/MPa 172
    $ {\nu }_{23}^{\rm{0}}$ 0.46 $ {S}_{23}^{\rm{0}}$/MPa 105
    $ {E}_{\rm{m}}^{\rm{0}}$/GPa 3.5 $ {G}_{\rm{m}}^{\rm{0}}$/GPa 1.3
    Notes: Superscript “0”—Mechanical properties at RTD condition; $ {E}_{\rm{m}}^{\rm{0}}$,$ {G}_{\rm{m}}^{\rm{0}}$—Matrix moduli.
    下载: 导出CSV

    表  4  T800/X850复合材料70℃平衡吸湿状态(ETW)应力分析参数[12,22]

    Table  4.   Stress analysis parameters of T800/X850 composite under 70℃/wet (ETW) condition[12,22]

    αm /(10−6 K−1)αf /(10−6 K−1)$ {\nu }_{\rm{f}}^{\rm{0}}$$ {\nu }_{\rm{m}}^{\rm{0}}$βm
    30.8 −3.16 0.32 0.35 0.3
    ρ/(g∙cm−3) ρm/(g∙cm−3) $ {T}_{\rm{g}}^{\rm{0}}$/℃ C/% k
    1.58 1.25 185 0.624 5490
    Notes: αm, αf—Thermal expansion coefficients of matrix and fiber; $ {\nu }_{\rm{f}}^{\rm{0}}$, $ {\nu }_{\rm{m}}^{\rm{0}}$—Poisson’s ratios of fiber and matrix; βm—Moisture expansion coefficient of matrix; ρ, ρm—Densities of the unidirectional composites and matrix; $ {T}_{\rm{g}}^{\rm{0}}$—Glass transition temperature at dry states; ∆C—Moisture content; k—Temperature shift per unit absorbed moisture.
    下载: 导出CSV

    表  5  T800/X850复合材料ETW的工程常数计算参数[12]

    Table  5.   Engineering constant calculation parameters of T800/X850 composite under ETW condition[12]

    Itemabcde
    Value 0.04 0.5 0.5 0.04 0.54
    Item f g h i j
    Value 0.5 0.5 0.5 0.5 0.5
    下载: 导出CSV

    表  6  T800/X850复合材料-铝合金单钉双剪连接结构拉伸失效载荷预测结果与试验结果比较

    Table  6.   Comparison of tensile failure loads between numerical and experimental results of T800/X850 composite-aluminum single-bolt double-lap joints

    TestPult/kNPave/kNCOV/%Pnum/kNRe/%
    RTD 24.70 23.89 3.5 25.31 5.9
    23.05
    23.93
    ETW 21.17 21.33 1.1 21.78 1.5
    21.67
    21.16
    21.30
    Notes: Pult—Test failure load; Pave—Average failure load; COV—Coefficient of variation; Pnum—Numerical simulation failure loads; Re—Relative error between simulated failure load and the test value.
    下载: 导出CSV
  • [1] JARED T, YIKAI Y, JEFFREY Y, et al. Environmentally assisted crack growth in adhesively bonded composite joints[J]. Composites Part A: Applied Science and Manufacturing,2017,102:368-377. doi: 10.1016/j.compositesa.2017.08.018
    [2] GONG Y, ZHAO L B, ZHANG J Y, et al. A novel model for determining the fatigue delamination resistance in composite laminates from a viewpoint of energy[J]. Composites Science and Technology,2018,167:489-496. doi: 10.1016/j.compscitech.2018.08.045
    [3] ZHANG J Y, QI D X, ZHOU L W, et al. A progressive failure analysis model for composite structures in hygrothermal environments[J]. Composite Structures,2015,133:331-342. doi: 10.1016/j.compstruct.2015.07.063
    [4] 郭居上. 温度场中复合材料板与铝合金板钉接结构内应力研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    GUO J S. Internal stress analysis of bolted joints composed of composte plate and aluminum plate in thermal field[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese).
    [5] KAPIDZIC Z, ANSELL H, SCHON J, et al. Fatigue bearing failure of CFRP composite in bolted joints exposed to biaxial variable amplitude loading at elevated temperature[J]. Composite Structures,2016,142:71-77. doi: 10.1016/j.compstruct.2016.01.064
    [6] 裴瑞光, 肖毅, 陈豪麟, 等. 复合材料螺栓连接预紧力松弛的温度-时间依存行为[J]. 复合材料学报, 2016, 33(4):768-778.

    PEI R G, XIAO Y, CHEN H L, et al. Temperature-time dependent behavior for preload relaxation in bolted composite joints[J]. Acta Materiae Compositae Sinica,2016,33(4):768-778(in Chinese).
    [7] TURVEY G J, SANA A. Pultruded GFRP double-lap single-bolt tension joints: Temperature effects on mean and characteristic failure stresses and knock-down factors[J]. Composite Structures,2016,153:624-631. doi: 10.1016/j.compstruct.2016.06.016
    [8] LI H L, ZHANG K F, CHENG H, et al. Multi-stage mechanical behavior and failure mechanism analysis of CFRP/Al single-lap bolted joints with different seawater ageing conditions[J]. Composite Structures,2019,208:634-645. doi: 10.1016/j.compstruct.2018.10.044
    [9] MIYANO Y, NAKADA M, SEKINE N. Life prediction of CFRP/metal bolted joint under water absorption condition[J]. Journal of Composite Materials,2010,44(20):2393-2411. doi: 10.1177/0021998310372697
    [10] MARIAM M, AFENDI M, ABDUL M M S, et al. Hydrothermal ageing effect on the mechanical behaviour and fatigue response of aluminium alloy/glass/epoxy hybrid composite single lap joints[J]. Composites Structures,2019,219:69-82. doi: 10.1016/j.compstruct.2019.03.078
    [11] LASZLO P, GEORGE S. Mechanics of composite structures[M]. Cambridge: Cambridge University Press, 2003.
    [12] SHAN M J, ZHAO L B, HONG H M, et al. A progressive fatigue damage model for composite structures in hygrothermal environments[J]. International Journal of Fatigue,2018,111:299-307. doi: 10.1016/j.ijfatigue.2018.02.019
    [13] TSAI S W. Composite design, 4th edition[M]. Dayton: Think Composites, 1988.
    [14] SHEN C H, SPRINGER G S. Moisture absorption and desorption of composite materials[J]. Journal of Composite Materials, 1976, 10: 2-20.
    [15] POON C, LESSARD L, SHOKRIEH M. Three dimensional progressive failure analysis of pin/bolt loaded composite laminates[C]//The 83rd meeting of the AGARD SMP on bolted joints in polymeric composites. Italy: 1996.
    [16] ZHANG J Y, ZHOU L W, CHEN Y L, et al. A micromechanics-based degradation model for composite progressive damage analysis[J]. Journal of Composite Materials,2016,50(16):2271-2287. doi: 10.1177/0021998315602947
    [17] YU H L, JEONG D Y. Application of a stress triaxiality dependent fracture criterion in the finite element analysis of unnotched Charpy specimens[J]. Theoretical and Applied Fracture Mechanics,2010,54(1):54-62. doi: 10.1016/j.tafmec.2010.06.015
    [18] LEE Y W, WIERZBICKI T. Quick fracture calibration for industrial use[R]. Cambridge: MIT Impact and Crashworthiness Laboratory, 2004.
    [19] BAO Y B, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences,2004,46(1):81-98. doi: 10.1016/j.ijmecsci.2004.02.006
    [20] SONG Q, AMIN H, ZHAO X, et al. Experimental and numerical investigation of ductile fracture of carbon steel structural components[J]. Journal of Constructional Steel Research,2018,145:425-437. doi: 10.1016/j.jcsr.2018.02.032
    [21] 李喜梅, 汤剑, 常万顺, 等. 采用Matlab测定铝合金形变硬化指数[J]. 辽宁工程技术大学学报(自然科学版), 2015, 34(2):208-211.

    LI X M, TANG J, CHANG W S, et al. Test of aluminum alloy strain hardening exponent based on Matlab[J]. Journal of Liaoning Technical University (Natural Science Edition),2015,34(2):208-211(in Chinese).
    [22] ZHAO L B, LI Y, ZHANG J Y, et al. A novel material degradation model for unidirectional CFRP composites[J]. Composites Part B: Engineering,2018,135:84-94. doi: 10.1016/j.compositesb.2017.09.038
    [23] ASTM International. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials: ASTM D5229M—14[S]. West Conshohocken: ASTM International, 2014.
    [24] ASTM International. Standard test method for bearing response of polymer matrix composite laminates: ASTM D5961M—13[S]. West Conshohocken: ASTM International, 2013.
    [25] ZHANG J Y, ZHOU L W, CHEN Y L, et al. A micromechanics-based degradation model for composite progressive damage analysis[J]. Journal of Composite Materials,2016,50:1-17.
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  1211
  • HTML全文浏览量:  584
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 录用日期:  2020-09-16
  • 网络出版日期:  2020-09-27
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回