Recent progress in carbon fiber reinforced composites for electricity storage
-
摘要: 复合材料化是航空、航天、国防、交通等装备结构升级的重要趋势。碳纤维复合材料的力学性能优异,同时兼具良好的导电特性,可用于存储和释放电能,实现结构的承载和储/放电一体化,从而达到材料多功能化和结构轻量化。结构储电复合材料通常是采用碳纤维织物作为电极材料,采用具有结构承载和离子导电的多功能聚合物基体为固态电解质,玻璃纤维织物等作为隔膜材料。本文主要对典型结构储电复合材料进行综述,包括结构电池、结构介电电容器和结构超级电容器,详细阐述了三种结构储电复合材料的组分材料、器件工作原理及多功能特性等。通过对比三种结构储电复合材料,概括了结构储电复合材料所面临的问题和挑战,提出了结构储电复合材料的发展趋势。Abstract: Composite materialization is an important trend in the structural upgrading of aerospace, defense, transportation, etc. Due to excellent mechanical properties and electrical conductivity, carbon fiber reinforced composites can be used in structural components whilst having the capacity to store/output electrical energy, which realize an integration of load bearing and electrical power charge/discharge. Hence, both the multifunctional material and the lightweight structure can be achieved using such carbon fibre composites. Structural power composites are comprised of carbon fiber electrodes, glass fiber separator and solid electrolytes, which are multifunctional polymer matrix transferreing load from reinforcments and enabling ions to travel between electrodes. This paper reviewed the typical structural power composites, including structural batteries, structural dielectric capacitors and structural supercapacitors. Constituent materials, device working principles and multifunctional characteristics were summarized for three types of structural power composites. The problems and challenges facing structural power composites were eventually dicussed. Insights were given for the development trend of structural power composites.
-
表 1 碳纤维活化前后的力学性能和电性能[30]
Table 1. Electrical and mechanical properties of untreated and activated carbon fibers[30]
Carbon fiber SBET/(m2·g−1) dpore/(nm) σf/MPa E/GPa ρ/(mΩ·cm) Csp/(F·g−1) CF 0.21 5.6 3290 204 1.54 0.06 ACF 21.39 2.5 3960 207 1.79 2.63 IACF 1100 1.9 1100 40 329 0.10 Notes:SBET—Specific surface area; dpore—Average pore diameter; σf—Mechanical single fibre strength; E—Young’s modulus; ρ—Electrical resistivity; Csp—Specific capacitance; CF—Unmodified carbon fiber; ACF—KOH activated carbon fiber; IACF—Industrially-activated carbon fiber. 表 2 不同结构超级电容器的力学性能和电性能(能量密度和功率密度在2.0 V的电压下测量)[30]
Table 2. Electrical and mechanical properties of various structural supercapacitors prototypes (Energy and power densities calculated by assuming a supplied voltage of 2.0 V)[30]
Prototype Electrolyte Csp/(mF·g−1) Γ/(Wh·kg−1) P/(W·kg−1) Ec/GPa Xc/MPa CF/PAN PC/EC+0.1 mol/L LiTFSI 3.0 0.000870 90.40 — — ACF/PAN PC/EC+0.1 mol/L LiTFSI 55.0 0.010540 71.63 — — CF/PEGDGE 0.1 mol/L LiTFSI 4.5 0.000200 8.82 24.57 19.44 ACF/PEGDGE 0.1 mol/L LiTFSI 1.4 0.000003 0.05 38.67 29.35 CF/MVR444 — — — — 33.04 36.21 ACF/MVR444 — — — — 51.07 49.84 Notes: Γ—Energy density; P—Maximum power density; Ec—Compressive modulus normalized to Vf = 55%; Xc—Compressive strength; PAN—Poly(acrylonitrile); PEGDGE—Poly(ethylene glycol) diglycidyl ether; MVR444—Epoxy resin; LiTFSI—Bis(trifluoromethane)sulfonimide lithium salt; PC—Propylene carbonate; EC—Ethylene carbonate. -
[1] 杨小平, 黄智彬, 张志勇, 等. 实现节能减排的碳纤维复合材料应用进展[J]. 材料导报, 2010, 24(3):1-5, 20.YANG Xiaoping, HUANG Zhibin, ZHANG Zhiyong, et al. Application progress of carbon fiber composite materials for energy saving and emission reduction[J]. Materials Review,2010,24(3):1-5, 20(in Chinese). [2] 薛军. 瑞典研制具有高抗拉强度碳纤维锂电池材料[J]. 电动自行车, 2014(7):46-48. doi: 10.3969/j.issn.1672-6936.2014.07.018XUE Jun. Sweden develops carbon fiber lithium battery materials with high tensile strength[J]. Electric Bicycle,2014(7):46-48(in Chinese). doi: 10.3969/j.issn.1672-6936.2014.07.018 [3] YU Y, ZHANG B, FENG M, et al. Multifunctional structural lithium ion batteries based on carbon fiber reinforced plastic composites[J]. Composites Science and Technology,2017,147:62-70. [4] SHAO Y, EL-KADY M F, SUN J, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chemical Reviews,2018,118(18):9233-9280. [5] SNYDER J F, O’BRIEN D J, WETZEL E D. Structural batteries, capacitors and supercapacitors[M]//DUDNEY N J, WEST W C, NANDA J. Handbook of solid state batteries (Second Edition). Washington: World Scientific, 2015: 659-699. [6] CHRISTEN T, CARLEN M W. Theory of Ragone plots[J]. Journal of Power Sources,2000,91(2):210-216. doi: 10.1016/S0378-7753(00)00474-2 [7] DINCER I. Renewable energy and sustainable development: A crucial review[J]. Renewable and Sustainable Enerdy Reviews,2000,4(2):157-175. doi: 10.1016/S1364-0321(99)00011-8 [8] PANWAR N L, KAUSHIK S C, KOTHARI S. Role of renewable energy sources in environmental protection: A review[J]. Renewable and Sustainable Energy Reviews,2011,15(3):1513-1524. doi: 10.1016/j.rser.2010.11.037 [9] THOMAS J P, QIDWAI M A. Mechanical design and performance of composite multifunctional materials[J]. Acta Materialia,2004,52(8):2155-2164. doi: 10.1016/j.actamat.2004.01.007 [10] THOMAS J, QIDWAI M. The design and application of multifunctional structure-battery materials systems[J]. JOM,2005,57(3):18-24. doi: 10.1007/s11837-005-0228-5 [11] 张瑞. 金属硅储锂性能的研究[D]. 天津: 天津理工大学, 2013.ZHANG Rui. Lithium storage property of metallic silicon[D]. Tianjin: Tianjin University of Technology, 2013(in Chinese). [12] CARLSON T, DANIEL O, WYSOCKI M, et al. Structural capacitor materials made from carbon fibre epoxy composites[J]. Composites Science & Technology,2010,70(7):1135-1140. [13] ASP L, ALEXANDER B, GÖRAN L, et al. Battery half cell, a battery and their manufacture: United States, 20150180086[P]. 2015-06-25. [14] JACQUES E, KJELL M H, ZENKERT D, et al. Expansion of carbon fibers induced by lithium intercalation for structural electrode applications[J]. Carbon,2013,59:246-254. doi: 10.1016/j.carbon.2013.03.015 [15] KJELL M H, JACQUES E, ZENKERT D, et al. PAN-based carbon fiber negative electrodes for structural lithium-ion batteries[J]. Journal of the Electrochemical Society,2011,158(12):1455-1460. doi: 10.1149/2.053112jes [16] LIU P, SHERMAN E, JACOBSEN A. Design and fabrication of multifunctional structural batteries[J]. Journal of Power Sources,2009,189(1):646-650. doi: 10.1016/j.jpowsour.2008.09.082 [17] SNYDER J F, CARTER R H, WONG E L, et al. Multifunctional structural composite batteries[C]//Proceedings of Society for the Advancement of Materiel and Process Engineering (SAMPE) 2006 Fall Technical Conference. Dallas: SAMPE, 2006. [18] WONG E L, BAECHELE D M, XU K, et al. Design and processing of structural composite batteries[C]//Proceedings of Society for the Advancement of Materiel and Process Engineering (SAMPE) 2007 Symposium and Exhibition. Baltimore: SAMPE, 2007. [19] GREENHALGH E. Storage composite structural power storage for hybrid vehicles[C]//Proceedings of the 15th European Conference on Composite Materials. Venice: ECCM, 2012. [20] HE K, CHEN C, FAN R, et al. Polyethylene oxide/garnet-type Li6.4La3Zr1.4Nb0.6O12 composite electrolytes with improved electrochemical performance for solid state lithium rechargeable batteries[J]. Composites Science & Technology,2019,175:28-34. [21] LEIJONMARCK S, CARLSON T, LINDBERGH G, et al. Solid polymer electrolyte-coated carbon fiber for structural and novel micro batteries[J]. Composites Science and Technology,2013,89:149-157. doi: 10.1016/j.compscitech.2013.09.026 [22] CHUNG D D L. Development, design and applications of structural capacitors[J]. Applied Energy,2018,231:89-101. doi: 10.1016/j.apenergy.2018.09.132 [23] CARLSON T, ASP L E. Structural carbon fibre composite/PET capacitors: Effects of dielectric separator thickness[J]. Composites Part B: Engineering,2013,49:16-21. [24] CHAN K Y, JIA B, LIN H, et al. Design of a structural power composite using graphene oxide as a dielectric material layer[J]. Materials Letters,2018,216:162-165. doi: 10.1016/j.matlet.2017.12.118 [25] O’BRIEN D J, BAECHLE D M, YURCHAK O B, et al. Effect of processing conditions and electrode characteristics on the electrical properties of structural composite capacitors[J]. Composites Part A: Applied Science and Manufacturing,2015,68:47-55. [26] LUO X, CHUNG D D L. Carbon-fiber/polymer-matrix composites as capacitors[J]. Composites Science & Technology,2001,61(6):885-888. [27] LIN Y, ZHOU Z, SODANO H A. Barium titanate and barium strontium titanate coated carbon fibers for multifunctional structural capacitors[J]. Journal of Composite Materials,2013,47(12):1527-1533. doi: 10.1177/0021998312449029 [28] CHEN X, PAUL R, DAI L. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review,2017,4(3):453-489. [29] QIAN H, KUCERNAK A R, GREENHALGH E S, et al. Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric[J]. ACS Applied Materials & Interfaces,2013,5(13):6113-6122. [30] SHIRSHOVA N, QIAN H, SHAFFER M S P, et al. Structural composite supercapacitors[J]. Composites Part A: Applied Science & Manufacturing,2013,46:96-107. [31] GREENHALGH E S, ANKERSEN J, ASP L E, et al. Mechanical, electrical and microstructural characterisation of multifunctional structural power composites[J]. Journal of Composite Materials,2015,49(15):1823-1834. doi: 10.1177/0021998314554125 [32] DEKA B K, HAZARIKA A, KIM J, et al. Multifunctional CuO nanowire embodied structural supercapacitor based on woven carbon fiber/ionic liquid-polyester resin[J]. Composites Part A: Applied Science and Manufacturing,2016,87:256-262. doi: 10.1016/j.compositesa.2016.05.007 [33] REECE R, LEKAKOU C, SMITH P A. A structural supercar-pacitor based on activated carbon fabric and a solid electrolyte[J]. Materials Science & Technology,2019,35(3):368-375. [34] JAVAID A, ZAFRULLAH M B, KHAN F U H, et al. Improving the multifunctionality of structural supercapacitors by interleaving graphene nanoplatelets between carbon fibers and solid polymer electrolyte[J]. Journal of Composite Materials,2018,53(10):1401-1409.