留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构储电碳纤维复合材料研究进展

丁颖慧 祁国成 张博明

丁颖慧, 祁国成, 张博明. 结构储电碳纤维复合材料研究进展[J]. 复合材料学报, 2021, 38(1): 16-24. doi: 10.13801/j.cnki.fhclxb.20200921.006
引用本文: 丁颖慧, 祁国成, 张博明. 结构储电碳纤维复合材料研究进展[J]. 复合材料学报, 2021, 38(1): 16-24. doi: 10.13801/j.cnki.fhclxb.20200921.006
DING Yinghui, QI Guocheng, ZHANG Boming. Recent progress in carbon fiber reinforced composites for electricity storage[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 16-24. doi: 10.13801/j.cnki.fhclxb.20200921.006
Citation: DING Yinghui, QI Guocheng, ZHANG Boming. Recent progress in carbon fiber reinforced composites for electricity storage[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 16-24. doi: 10.13801/j.cnki.fhclxb.20200921.006

结构储电碳纤维复合材料研究进展

doi: 10.13801/j.cnki.fhclxb.20200921.006
基金项目: 国家自然科学基金 (11872086)
详细信息
    通讯作者:

    祁国成,博士,研究方向为复合材料力学及复合材料结构/功能一体化  E-mail:qgc0207@163.com

  • 中图分类号: TB332

Recent progress in carbon fiber reinforced composites for electricity storage

  • 摘要: 复合材料化是航空、航天、国防、交通等装备结构升级的重要趋势。碳纤维复合材料的力学性能优异,同时兼具良好的导电特性,可用于存储和释放电能,实现结构的承载和储/放电一体化,从而达到材料多功能化和结构轻量化。结构储电复合材料通常是采用碳纤维织物作为电极材料,采用具有结构承载和离子导电的多功能聚合物基体为固态电解质,玻璃纤维织物等作为隔膜材料。本文主要对典型结构储电复合材料进行综述,包括结构电池、结构介电电容器和结构超级电容器,详细阐述了三种结构储电复合材料的组分材料、器件工作原理及多功能特性等。通过对比三种结构储电复合材料,概括了结构储电复合材料所面临的问题和挑战,提出了结构储电复合材料的发展趋势。

     

  • 图  1  不同储能器件的能量密度和功率密度[6]

    Figure  1.  Energy density and power density of different energy storage devices[6]

    SMES—Superconducting magnetic energy storage devices

    图  2  结构电池示意图[12]: (a)层合板结构电池; (b) 3D-纤维结构电池

    Figure  2.  Schematic diagram of structural battery[12]: (a) Laminated structural battery; (b) 3D-fibre structural battery

    图  3  结构介电电容器的基本结构[22]: (a)单个电容; (b)电容器串联;(c)电容器并联

    Figure  3.  Basic structure of structural dielectric capacitor[22]: (a) Single capacitor; (b) Capacitor series; (c) Capacitor parallel connection

    图  4  双电层型超级电容器(EDLC)和赝电容型超级电容器的充放电原理[28]

    Figure  4.  Schematic representation of electrical double-layer supercapacitor (EDLC) and pseudosupercapacitor[28]

    图  5  结构超级电容器示意图[29]

    Figure  5.  Schematic diagram of structural supercapacitors[29]

    GF—Glass fibre; PE—Polyethylene

    图  6  不同改性方法的碳纤维比表面积和容量[23]

    Figure  6.  Specific surface area and specific capacitance of carbon fibre after different surface modifications[23]

    CNT—Carbon nanotube

    图  7  将环氧-液态电解质浸渍置于玻璃板上的结构超级电容器的辅助真空传递模塑(VARTM)原理[33]

    Figure  7.  Schematic of vacuum assisted resin transfer molding (VARTM) process for impregnation of electrolyte-epoxy mixture into structural supercapacitor mounted on a plate[33]

    图  8  结构超级电容器复合材料制造工艺原理[34]

    Figure  8.  Schematic of structural supercapacitor composite fabrication process[34]

    表  1  碳纤维活化前后的力学性能和电性能[30]

    Table  1.   Electrical and mechanical properties of untreated and activated carbon fibers[30]

    Carbon fiberSBET/(m2·g−1)dpore/(nm)σf/MPaE/GPaρ/(mΩ·cm)Csp/(F·g−1)
    CF 0.21 5.6 3290 204 1.54 0.06
    ACF 21.39 2.5 3960 207 1.79 2.63
    IACF 1100 1.9 1100 40 329 0.10
    Notes:SBET—Specific surface area; dpore—Average pore diameter; σf—Mechanical single fibre strength; E—Young’s modulus; ρ—Electrical resistivity; Csp—Specific capacitance; CF—Unmodified carbon fiber; ACF—KOH activated carbon fiber; IACF—Industrially-activated carbon fiber.
    下载: 导出CSV

    表  2  不同结构超级电容器的力学性能和电性能(能量密度和功率密度在2.0 V的电压下测量)[30]

    Table  2.   Electrical and mechanical properties of various structural supercapacitors prototypes (Energy and power densities calculated by assuming a supplied voltage of 2.0 V)[30]

    PrototypeElectrolyteCsp/(mF·g−1)Γ/(Wh·kg−1)P/(W·kg−1)Ec/GPaXc/MPa
    CF/PAN PC/EC+0.1 mol/L LiTFSI 3.0 0.000870 90.40
    ACF/PAN PC/EC+0.1 mol/L LiTFSI 55.0 0.010540 71.63
    CF/PEGDGE 0.1 mol/L LiTFSI 4.5 0.000200 8.82 24.57 19.44
    ACF/PEGDGE 0.1 mol/L LiTFSI 1.4 0.000003 0.05 38.67 29.35
    CF/MVR444 33.04 36.21
    ACF/MVR444 51.07 49.84
    Notes: Γ—Energy density; P—Maximum power density; Ec—Compressive modulus normalized to Vf = 55%; Xc—Compressive strength; PAN—Poly(acrylonitrile); PEGDGE—Poly(ethylene glycol) diglycidyl ether; MVR444—Epoxy resin; LiTFSI—Bis(trifluoromethane)sulfonimide lithium salt; PC—Propylene carbonate; EC—Ethylene carbonate.
    下载: 导出CSV
  • [1] 杨小平, 黄智彬, 张志勇, 等. 实现节能减排的碳纤维复合材料应用进展[J]. 材料导报, 2010, 24(3):1-5, 20.

    YANG Xiaoping, HUANG Zhibin, ZHANG Zhiyong, et al. Application progress of carbon fiber composite materials for energy saving and emission reduction[J]. Materials Review,2010,24(3):1-5, 20(in Chinese).
    [2] 薛军. 瑞典研制具有高抗拉强度碳纤维锂电池材料[J]. 电动自行车, 2014(7):46-48. doi: 10.3969/j.issn.1672-6936.2014.07.018

    XUE Jun. Sweden develops carbon fiber lithium battery materials with high tensile strength[J]. Electric Bicycle,2014(7):46-48(in Chinese). doi: 10.3969/j.issn.1672-6936.2014.07.018
    [3] YU Y, ZHANG B, FENG M, et al. Multifunctional structural lithium ion batteries based on carbon fiber reinforced plastic composites[J]. Composites Science and Technology,2017,147:62-70.
    [4] SHAO Y, EL-KADY M F, SUN J, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chemical Reviews,2018,118(18):9233-9280.
    [5] SNYDER J F, O’BRIEN D J, WETZEL E D. Structural batteries, capacitors and supercapacitors[M]//DUDNEY N J, WEST W C, NANDA J. Handbook of solid state batteries (Second Edition). Washington: World Scientific, 2015: 659-699.
    [6] CHRISTEN T, CARLEN M W. Theory of Ragone plots[J]. Journal of Power Sources,2000,91(2):210-216. doi: 10.1016/S0378-7753(00)00474-2
    [7] DINCER I. Renewable energy and sustainable development: A crucial review[J]. Renewable and Sustainable Enerdy Reviews,2000,4(2):157-175. doi: 10.1016/S1364-0321(99)00011-8
    [8] PANWAR N L, KAUSHIK S C, KOTHARI S. Role of renewable energy sources in environmental protection: A review[J]. Renewable and Sustainable Energy Reviews,2011,15(3):1513-1524. doi: 10.1016/j.rser.2010.11.037
    [9] THOMAS J P, QIDWAI M A. Mechanical design and performance of composite multifunctional materials[J]. Acta Materialia,2004,52(8):2155-2164. doi: 10.1016/j.actamat.2004.01.007
    [10] THOMAS J, QIDWAI M. The design and application of multifunctional structure-battery materials systems[J]. JOM,2005,57(3):18-24. doi: 10.1007/s11837-005-0228-5
    [11] 张瑞. 金属硅储锂性能的研究[D]. 天津: 天津理工大学, 2013.

    ZHANG Rui. Lithium storage property of metallic silicon[D]. Tianjin: Tianjin University of Technology, 2013(in Chinese).
    [12] CARLSON T, DANIEL O, WYSOCKI M, et al. Structural capacitor materials made from carbon fibre epoxy composites[J]. Composites Science & Technology,2010,70(7):1135-1140.
    [13] ASP L, ALEXANDER B, GÖRAN L, et al. Battery half cell, a battery and their manufacture: United States, 20150180086[P]. 2015-06-25.
    [14] JACQUES E, KJELL M H, ZENKERT D, et al. Expansion of carbon fibers induced by lithium intercalation for structural electrode applications[J]. Carbon,2013,59:246-254. doi: 10.1016/j.carbon.2013.03.015
    [15] KJELL M H, JACQUES E, ZENKERT D, et al. PAN-based carbon fiber negative electrodes for structural lithium-ion batteries[J]. Journal of the Electrochemical Society,2011,158(12):1455-1460. doi: 10.1149/2.053112jes
    [16] LIU P, SHERMAN E, JACOBSEN A. Design and fabrication of multifunctional structural batteries[J]. Journal of Power Sources,2009,189(1):646-650. doi: 10.1016/j.jpowsour.2008.09.082
    [17] SNYDER J F, CARTER R H, WONG E L, et al. Multifunctional structural composite batteries[C]//Proceedings of Society for the Advancement of Materiel and Process Engineering (SAMPE) 2006 Fall Technical Conference. Dallas: SAMPE, 2006.
    [18] WONG E L, BAECHELE D M, XU K, et al. Design and processing of structural composite batteries[C]//Proceedings of Society for the Advancement of Materiel and Process Engineering (SAMPE) 2007 Symposium and Exhibition. Baltimore: SAMPE, 2007.
    [19] GREENHALGH E. Storage composite structural power storage for hybrid vehicles[C]//Proceedings of the 15th European Conference on Composite Materials. Venice: ECCM, 2012.
    [20] HE K, CHEN C, FAN R, et al. Polyethylene oxide/garnet-type Li6.4La3Zr1.4Nb0.6O12 composite electrolytes with improved electrochemical performance for solid state lithium rechargeable batteries[J]. Composites Science & Technology,2019,175:28-34.
    [21] LEIJONMARCK S, CARLSON T, LINDBERGH G, et al. Solid polymer electrolyte-coated carbon fiber for structural and novel micro batteries[J]. Composites Science and Technology,2013,89:149-157. doi: 10.1016/j.compscitech.2013.09.026
    [22] CHUNG D D L. Development, design and applications of structural capacitors[J]. Applied Energy,2018,231:89-101. doi: 10.1016/j.apenergy.2018.09.132
    [23] CARLSON T, ASP L E. Structural carbon fibre composite/PET capacitors: Effects of dielectric separator thickness[J]. Composites Part B: Engineering,2013,49:16-21.
    [24] CHAN K Y, JIA B, LIN H, et al. Design of a structural power composite using graphene oxide as a dielectric material layer[J]. Materials Letters,2018,216:162-165. doi: 10.1016/j.matlet.2017.12.118
    [25] O’BRIEN D J, BAECHLE D M, YURCHAK O B, et al. Effect of processing conditions and electrode characteristics on the electrical properties of structural composite capacitors[J]. Composites Part A: Applied Science and Manufacturing,2015,68:47-55.
    [26] LUO X, CHUNG D D L. Carbon-fiber/polymer-matrix composites as capacitors[J]. Composites Science & Technology,2001,61(6):885-888.
    [27] LIN Y, ZHOU Z, SODANO H A. Barium titanate and barium strontium titanate coated carbon fibers for multifunctional structural capacitors[J]. Journal of Composite Materials,2013,47(12):1527-1533. doi: 10.1177/0021998312449029
    [28] CHEN X, PAUL R, DAI L. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review,2017,4(3):453-489.
    [29] QIAN H, KUCERNAK A R, GREENHALGH E S, et al. Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric[J]. ACS Applied Materials & Interfaces,2013,5(13):6113-6122.
    [30] SHIRSHOVA N, QIAN H, SHAFFER M S P, et al. Structural composite supercapacitors[J]. Composites Part A: Applied Science & Manufacturing,2013,46:96-107.
    [31] GREENHALGH E S, ANKERSEN J, ASP L E, et al. Mechanical, electrical and microstructural characterisation of multifunctional structural power composites[J]. Journal of Composite Materials,2015,49(15):1823-1834. doi: 10.1177/0021998314554125
    [32] DEKA B K, HAZARIKA A, KIM J, et al. Multifunctional CuO nanowire embodied structural supercapacitor based on woven carbon fiber/ionic liquid-polyester resin[J]. Composites Part A: Applied Science and Manufacturing,2016,87:256-262. doi: 10.1016/j.compositesa.2016.05.007
    [33] REECE R, LEKAKOU C, SMITH P A. A structural supercar-pacitor based on activated carbon fabric and a solid electrolyte[J]. Materials Science & Technology,2019,35(3):368-375.
    [34] JAVAID A, ZAFRULLAH M B, KHAN F U H, et al. Improving the multifunctionality of structural supercapacitors by interleaving graphene nanoplatelets between carbon fibers and solid polymer electrolyte[J]. Journal of Composite Materials,2018,53(10):1401-1409.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  4170
  • HTML全文浏览量:  747
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-20
  • 录用日期:  2020-09-07
  • 网络出版日期:  2020-09-22
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回