Progress of silicon-based anode for lithium-ion batteries with metal-organic frameworks
-
摘要: 近年来,金属-有机骨架(MOFs)及其衍生物由于具有高孔隙率、可修饰的官能团、可控的化学成分等优点,在改善硅负极体积膨胀和导电性等方面取得了很大进展。通过讨论MOFs及其衍生物在锂离子电池硅负极的最新研究成果,重点阐述了以MOFs为基体的硅负极的结构设计,提出了影响其电化学性能的相关因素。最后,针对MOFs及其衍生物在电化学应用中的研究瓶颈和可能的发展方向提出看法。Abstract: Recent years, metal-organic frameworks (MOFs) and their derived nanostructures have made great progress in improving the volumetric expansion and the electronic conductivity of silicon anodes due to their high porosity, modifiable functional groups and controlled chemical components. Through discussing the latest research findings of MOFs and its derivatives in silicon anodes of lithium-ion batteries, the structural design of silicon anodes with MOFs as matrices was emphasized, and the related factors affecting its electrochemical properties were put forward. Finally, the research bottlenecks and possible development directions of MOFs and its derivatives in electrochemical properties were proposed.
-
图 3 在不同电流密度下Si@ZIF-8-700N复合材料的放电容量(电池在试验前以50 mA·g−1的电流密度循环10次)和在200 mA·g−1下Si@ZIF-8-700N复合材料的循环性能[40]
Figure 3. Discharge capacity of Si@ZIF-8-700N composite at various current densities (cells were cycled for 10 times at a current density of 50 mA·g−1 before test) and long cycle performance of Si@ZIF-8-700N composite at 200 mA·g−1[40]
-
[1] CUI Q, ZHONG Y, PAN L, et al. Recent advances in designing high-capacity anode nanomaterials for Li-ion batteries and their atomic-scale storage mechanism studies[J]. Advanced Science,2018,5(7):1700902. doi: 10.1002/advs.201700902 [2] LIU Y, LIU H, ZHAO X, et al. Effect of spherical particle size on the electrochemical properties of lithium iron phosphate[J]. Journal of Wuhan University of Technology (Materials Science Edition),2019,34(3):549-557. doi: 10.1007/s11595-019-2086-y [3] ZUO Y, LI B, JIANG N, et al. A high capacity O2 type Li rich cathode material with a single layer Li2MnO3 superstructure[J]. Advanced Materials,2018,30(16):1707255. doi: 10.1002/adma.201707255 [4] WU F, MAJER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews,2020,49(5):1569-1614. doi: 10.1039/C7CS00863E [5] CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology,2008,3(1):31-35. doi: 10.1038/nnano.2007.411 [6] LI B, WANG Y F, JIANG N, et al. Electrolytic-anion-redox adsorption pseudocapacitance in nanosized lithium-free transition metal oxides as cathode materials for Li-ion batteries[J]. Nano Energy,2020,72:104727. doi: 10.1016/j.nanoen.2020.104727 [7] YIN P, YAO T, WU Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte Chemie International Edition,2016,55(36):10800-10805. doi: 10.1002/anie.201604802 [8] KIM M, CHOI I, KIM J J. Facile electrochemical synthesis of heterostructured amorphous-Sn@CuxO nanowire anode for Li-ion batteries with high stability and rate-performance[J]. Applied Surface Science,2019,478:225-233. [9] JIANG Z, LI C, HAO S, et al. An easy way for preparing high performance porous silicon powder by acid etching Al-Si alloy powder for lithium ion battery[J]. Electrochimica Acta,2014,115:393-398. doi: 10.1016/j.electacta.2013.08.123 [10] LEE S S, NAM K H, JUNG H, et al. Si-based composite interconnected by multiple matrices for high-performance Li-ion battery anodes[J]. Chemical Engineering Journal,2020,381:122619. doi: 10.1016/j.cej.2019.122619 [11] LU X, LUO F, XIONG Q, et al. Sn-MOF derived bimodal-distributed SnO2 nanosphere as a high performance anode of lithium ion batteries with high gravimetric and volumetric capacities[J]. Materials Research Bulletin,2018,99:45-51. doi: 10.1016/j.materresbull.2017.10.040 [12] HUANG G, YIN D, ZHANG F, et al. Yolk@shell or concave cubic NiO-Co3O4@C nanocomposites derived from metal-organic frameworks for advanced lithium-ion battery anodes[J]. Inorganic Chemistry,2017,56(16):9794-9801. doi: 10.1021/acs.inorgchem.7b01296 [13] ZHONG M, KONG L, LI N, et al. Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries[J]. Coordination Chemistry Reviews,2019,388:172-201. doi: 10.1016/j.ccr.2019.02.029 [14] YANG Y W, LIU X H, GAO E P, et al. Self-template construction of nanoporous carbon nanorods from a metal-organic framework for supercapacitor electrodes[J]. RSC Advances,2018,8(37):20655-20660. doi: 10.1039/C8RA03650K [15] DANG S, ZHU Q L, XU Q. Nanomaterials derived from metal-organic frameworks[J]. Nature Reviews Materials,2018,3:17075. doi: 10.1038/natrevmats.2017.75 [16] LI Y, JIANG B, HUANG Y. Constructing nanosheet-like MOF on the carbon fiber surfaces for improving the interfacial properties of carbo fiber/epoxy composites[J]. Applied Surface Science,2020,514:145870. doi: 10.1016/j.apsusc.2020.145870 [17] WESSELLS C D, PEDDADA S V, HUGGINS R A, et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano Letters,2011,11(12):5421-5425. doi: 10.1021/nl203193q [18] WANG X, KURONO R, NISHIMURA S, et al. Iron-oxalato framework with one-dimensional open channels for electrochemical sodium-ion intercalation[J]. Chemistry: A European Journal,2015,21(3):1096-1101. doi: 10.1002/chem.201404929 [19] XIA W, MAHMOOD A, ZOU R, et al. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion[J]. Energy & Environmental Science,2015,8(7):1837-1866. [20] SHEN K, CHEN X, CHEN J, et al. Development of MOF-derived carbon-based nanomaterials for efficient catalysis[J]. ACS Catalysis,2016,6(9):5887-5903. doi: 10.1021/acscatal.6b01222 [21] YOON T, BOK T, KIM C, et al. Mesoporous silicon hollow nanocubes derived from metal-organic framework template for advanced lithium-ion battery anode[J]. ACS Nano,2017,11(5):4808-4815. doi: 10.1021/acsnano.7b01185 [22] HAN Y, QI P, ZHOU J, et al. Metal-organic frameworks (MOF) as sandwich coating cushion for silicon anode in lithium ion batteries[J]. ACS Applied Materials & Interfaces,2015,7(48):26608-26613. [23] COGNET M, CONDOMINES J, CAMBEDOUZOU J, et al. An original recycling method for Li-ion batteries through large scale production of metal organic frameworks[J]. Journal of Hazardous Materials,2020,385:121603. doi: 10.1016/j.jhazmat.2019.121603 [24] SAFY M, HAIKAL R, ELSHAZLY B, et al. Charge percolation in metal-organic framework (HKUST-1) graphene nanocomposites[J]. Applied Materials Today,2020,19:100604. doi: 10.1016/j.apmt.2020.100604 [25] YI Q, DU M, SHEN B, et al. Hollow Fe3O4/carbon with surface mesopores derived from MOFs for enhanced lithium storage performance[J]. Science Bulletin,2020,65(3):233-242. doi: 10.1016/j.scib.2019.11.004 [26] LI T, BAI Y, WANG Y, et al. Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries[J]. Coordination Chemistry Reviews, 2020, 410: 213221. [27] WU Q, ZHOU X, XU J, et al. Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li-S batteries[J]. Journal of Energy Chemistry,2019,38:94-113. doi: 10.1016/j.jechem.2019.01.005 [28] ZHENG X, ZHANG L, FAN Z, et al. Enhanced catalytic activity over MIL-100(Fe) with coordinatively unsaturated Fe2+/Fe3+ sites for selective oxidation of H2S to sulfur[J]. Chemical Engineering Journal,2020,374:793-801. [29] XU Y, SUN X, WEI C, et al. A novel Si/Ag@PM@MIL-100 porous double-shell anode materials prepared by in-situ growth with MOF coatings[J]. Journal of Materials Science: Materials in Electronics,2020,31(2):1524-1534. doi: 10.1007/s10854-019-02669-z [30] PENG C, ZHANG Y, ZHANG B. MOF-derived jujube pit shaped C/Co composites with hierarchical structure for electromagnetic absorption[J]. Journal of Alloys and Compounds,2020,826:154203. doi: 10.1016/j.jallcom.2020.154203 [31] BAI Y, ZENG M, WU X, et al. Three-dimensional cage-like Si@ZIF-67 core-shell composites for high performance lithium storage[J]. Applied Surface Science,2020,510:145477. doi: 10.1016/j.apsusc.2020.145477 [32] GAO R, TANG J, YU X, et al. In situ synthesis of MOF-derived carbon shells for silicon anode with improved lithium-ion storage[J]. Nano Energy,2020,70:104444. doi: 10.1016/j.nanoen.2019.104444 [33] WANG M, GUO S. Highly uniform hollow CuCo2S4@C dodecahedra derived from ZIF-67 for high performance lithium-ion batteries[J]. Journal of Alloys and Compounds,2020,832:154978. doi: 10.1016/j.jallcom.2020.154978 [34] LI L, WANG Q, ZHANG X, et al. Unique three-dimensional Co3O4@N-CNFs derived from ZIFs and bacterial cellulose as advanced anode for sodium-ion batteries[J]. Applied Surface Science,2020,508:145295. doi: 10.1016/j.apsusc.2020.145295 [35] SUN X, XU W, ZHANG X, et al. ZIF-67@cellulose nanofiber hybrid membrane with controlled porosity for use as Li-ion battery separator[J]. Journal of Energy Chemistry,2020,52:170-180. [36] LIU Y, QUE X, WU X, et al. ZIF-67 derived carbon wrapped discontinuous CoxP nanotube as anode material in high-performance Li-ion battery[J]. Materials Today Chemistry,2020,17:100284. doi: 10.1016/j.mtchem.2020.100284 [37] LIU N, LIU J, JIA D, et al. Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries[J]. Energy Storage Materials,2019,18:165-173. doi: 10.1016/j.ensm.2018.09.019 [38] ZHANG W, CHU J, LI S, et al. CoNxC active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs as efficient multifunctional electrocatalyst for rechargeable Zn-air batteries[J]. Journal of Energy Chemistry,2020,51:323-332. doi: 10.1016/j.jechem.2020.04.067 [39] QI H, FENG Y, CHI Z, et al. In situ encapsulation of Co-based nanoparticles into nitrogen-doped carbon nanotubes-modified reduced graphene oxide as an air cathode for high-performance Zn-air batteries[J]. Nanoscale,2020,11(45):21943-21952. [40] HAN Y, QI P, FENG X, et al. In situ growth of MOF on the surface of Si nanoparticles for highly efficient lithium storage: Si@MOF nanocomposites as anode materials for lithium-ion Batteries[J]. ACS Applied Materials & Interfaces,2015,7(4):2178-2182. [41] LIANG R, HU A, LI M, et al. Cobalt encapsulated within porous MOF-derived nitrogen-doped carbon as an efficient bifunctional electrocatalyst for aprotic lithium-oxygen battery[J]. Journal of Alloys and Compounds,2020,810:151877. [42] WEI Q, CHEN Y, HONG X, et al. Saclike-silicon nanoparticles anchored in ZIF-8 derived spongy matrix as high-performance anode for lithium-ion batteries[J]. Journal of Colloid and Interface Science,2020,565:315-325. doi: 10.1016/j.jcis.2020.01.050 [43] LIANG J, LI X, CHENG Q, et al. High yield fabrication of hollow vesica-like silicon based on the Kirkendall effect and its application to energy storage[J]. Nanoscale,2015,7(8):3440-3444. doi: 10.1039/C4NR07642G [44] LIU F, LIU S, MENG J, et al. Stabilizing conversion reaction electrodes by MOF derived N-doped carbon shell for highly reversible lithium storage[J]. Nano Energy,2020,73:104758. doi: 10.1016/j.nanoen.2020.104758 [45] FENG L, HAN X, SU X, et al. Metal-organic frameworks derived porous carbon coated SiO composite as superior anode material for lithium ion batteries[J]. Journal of Alloys and Compounds,2018,765:512-519. doi: 10.1016/j.jallcom.2018.04.014 [46] JIN D, YANG X, OU Y, et al. Thermal pyrolysis of Si@ZIF-67 into Si@N-doped CNTs towards highly stable lithium storage[J]. Science Bulletin,2020,65(6):452-459. doi: 10.1016/j.scib.2019.12.005 [47] WEI Q, CHEN Y M, HONG X J, et al. Novel bread-like nitrogen-doped carbon anchored nano-silicon as highstable anode for lithium-ion batteries[J]. Applied Surface Science,2020,511:145609. doi: 10.1016/j.apsusc.2020.145609 [48] SUN K, XU C, HU T, et al. γ-Fe2O3/La-MOFs@SiO2 for magnetic resonance/fluorescence dual mode imaging and pH-drug delivery[J]. Materials Letters,2018,228:216-219. doi: 10.1016/j.matlet.2018.06.018 [49] HU Z, CUI H, LI J, et al. Constructing three-dimensional Li-transport channels within the Fe3O4@SiO2@RGO composite to improve its electrochemical performance in Li-ion batteries[J]. Ceramics International,2020,46(11):18868-18877. doi: 10.1016/j.ceramint.2020.04.207 [50] WU W, WANG M, WANG J, et al. Green design of Si/SiO2/C composites as high-performance anodes for lithium-ion Batteries[J]. ACS Applied Energy Materials,2020,3(4):3884-3892. doi: 10.1021/acsaem.0c00300 [51] MAJEED M K, MA G, CAO Y, et al. Metal-organic frameworks-derived mesoporous Si/SiOx@NC nanospheres as a long-lifespan anode material for lithium ion batteries[J]. Chemistry: A European Journal,2019,25(51):11991-11997. doi: 10.1002/chem.201903043 [52] ZHANG S, GAO H, XU X, et al. MOF-derived CoN/N-C@SiO2 yolk-shell nanoreactor with dual active sites for highly efficient catalytic advanced oxidation processes[J]. Chemical Engineering Journal,2020,381:122670. doi: 10.1016/j.cej.2019.122670 [53] WANG K, PEI S, HE Z, et al. Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes[J]. Chemical Engineering Journal,2019,356:272-281. doi: 10.1016/j.cej.2018.09.027 [54] CHEN S, SHEN L, AKEN P A, et al. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries[J]. Advanced Materials,2017,29(21):1605650. doi: 10.1002/adma.201605650 [55] LUO F, LIU B, ZHENG J, et al. Review-nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries[J]. Journal of The Electrochemical Society,2015,162(14):2509-2528. doi: 10.1149/2.0131514jes [56] CHO K Y, SEO J Y, KIM H J, et al. Facile control of defect site density and particle size of UiO-66 for enhanced hydrolysis rates: Insights into feasibility of Zr(Ⅳ)-based metal-organic framework (MOF) catalysts[J]. Applied Catalysis B: Environmental,2019,245:635-647. doi: 10.1016/j.apcatb.2019.01.033 [57] HAO X, LIANG Y, ZHEN H, et al. Fast and sensitive fluorescent detection of nitrite based on an amino-functionalized MOFs of UiO-66-NH2[J]. Journal of Solid State Chemistry,2020,287:121323. doi: 10.1016/j.jssc.2020.121323 [58] MALIK R, LOVERIDGE M J, WILLIAMS L J, et al. Porous metal-organic frameworks for enhanced performance silicon anodes in lithium-ion batteries[J]. Chemistry of Materials,2019,31(11):4156-4165. doi: 10.1021/acs.chemmater.9b00933 [59] RONG R, SUN Y, JI T, et al. Fabrication of highly CO2/N2 selective polycrystalline UiO-66 membrane with two-dimensional transition metal dichalcogenides as zirconium source via tertiary solvothermal growth[J]. Journal of Membrane Science,2020,610:118275. doi: 10.1016/j.memsci.2020.118275 [60] WANG Q, GUO C, HE J, et al. Fe2O3/C-modified Si nanoparticles as anode material for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds,2019,795:284-290. doi: 10.1016/j.jallcom.2019.05.038 [61] GUO C, HE J P, WU X, et al. Facile fabrication of honeycomb-like carbon network-encapsulated Fe/Fe3C/Fe3O4 with enhanced Li-storage performance[J]. ACS Applied Materials & Interfaces,2018,10(42):35994-36001. [62] ZHONG M, YANG D, XIE C, et al. Yolk-shell MnO@ZnMn2O4/N-C nanorods derived from α-MnO2/ZIF-8 as anode materials for lithium ion batteries[J]. Small,2016,12(40):5564-5571. doi: 10.1002/smll.201601959 [63] ZHANG J, CHU R, CHEN Y, et al. MOF-derived transition metal oxide encapsulated in carbon layer as stable lithium ion battery anodes[J]. Journal of Alloys and Compounds,2019,797:83-91. doi: 10.1016/j.jallcom.2019.04.162 [64] FU Y, ZHANG L, CHEN Y, et al. Multicolor upconversion luminescence of Ln-doped Sc2O3 achieved by coordination geometry mediated RE-MOFs molecular alloys as precursor[J]. Journal of Solid State Chemistry,2019,277:93-99. doi: 10.1016/j.jssc.2019.05.048 [65] WANG C, MUTAHIR S, WANG L, et al. Hierarchical MOF-derived layered Fe3O4 QDs@C imbedded on graphene sheets as a high-performance anode for lithium-ion storage[J]. Applied Surface Science,2020,509:144882. doi: 10.1016/j.apsusc.2019.144882 [66] KANETI Y V, TANG J, SALUNKHE R R, et al. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks[J]. Advanced Materials,2017,29(12):1604898. doi: 10.1002/adma.201604898 [67] WU F, WANG H, SHI J, et al. Surface modification of silicon nanoparticles by an “ink” layer for advanced lithium ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(23):19639-19648. [68] ZUO X, XIA Y, JI Q, et al. Self-templating construction of 3D hierarchical macro-/mesoporous silicon from 0D silica nanoparticles[J]. ACS Nano,2017,11(1):889-899. doi: 10.1021/acsnano.6b07450 [69] ULVESTAD A, ANDERSEN H F, MAEHLEN J P, et al. Long-term cyclability of substoichiometric silicon nitride thin film anodes for Li-ion batteries[J]. Scientific Reports,2017,7(1):13315. doi: 10.1038/s41598-017-13699-0 [70] SINGH B, INDRA A. Prussian blue and Prussian blue analogue-derived materials: Progress and prospects for electrochemical energy conversion[J]. Materials Today Energy,2020,16:100404. doi: 10.1016/j.mtener.2020.100404 [71] ZHANG K, MAO H, GU X, et al. ZIF-derived cobalt-containing N-doped carbon-coated SiOx nanoparticles for superior lithium storage[J]. ACS Applied Materials & Interfaces,2020,12(6):7206-7211. [72] QIU L, XIANG W, TIAN W, et al. Polyanion and cation co-doping stabilized Ni-rich Ni-Co-Al material as cathode with enhanced electrochemical performance for Li-ion battery[J]. Nano Energy,2019,63:103818. doi: 10.1016/j.nanoen.2019.06.014 [73] SURTHI K K, KAR K K, JANAKARAJAN R. Shape controlled and structurally stabilized Co-doped olivine lithium phosphate cathodes for high voltage conventional, thin and flexible Li-ion batteries[J]. Chemical Engineering Journal,2020,399:125858. doi: 10.1016/j.cej.2020.125858