留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

枣核/低密度聚乙烯复合材料的力学性能

卢文玉 蔡红珍 于文凡 徐航 韩祥生

卢文玉, 蔡红珍, 于文凡, 等. 枣核/低密度聚乙烯复合材料的力学性能[J]. 复合材料学报, 2021, 38(6): 1775-1783. doi: 10.13801/j.cnki.fhclxb.20200909.004
引用本文: 卢文玉, 蔡红珍, 于文凡, 等. 枣核/低密度聚乙烯复合材料的力学性能[J]. 复合材料学报, 2021, 38(6): 1775-1783. doi: 10.13801/j.cnki.fhclxb.20200909.004
LU Wenyu, CAI Hongzhen, YU Wenfan, et al. Mechanical properties of jujube pit/linear low density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1775-1783. doi: 10.13801/j.cnki.fhclxb.20200909.004
Citation: LU Wenyu, CAI Hongzhen, YU Wenfan, et al. Mechanical properties of jujube pit/linear low density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1775-1783. doi: 10.13801/j.cnki.fhclxb.20200909.004

枣核/低密度聚乙烯复合材料的力学性能

doi: 10.13801/j.cnki.fhclxb.20200909.004
基金项目: 国家重点研发计划项目(2018YFD1101001)
详细信息
    通讯作者:

    韩祥生,博士,讲师,硕士生导师,研究方向为生物基材料  E-mail:hanxs@sdut.edu.cn

  • 中图分类号: TB332;TS209

Mechanical properties of jujube pit/linear low density polyethylene composites

  • 摘要: 为充分利用红枣精深加工产生的废弃物,以枣核(JP)和低密度聚乙烯(LLDPE)为主要材料,采用注塑成型法制备JP/LLDPE复合材料,并对其静态力学性能(拉伸、弯曲和冲击)和动态力学性能(动态黏弹性、蠕变行为和应力松弛行为)进行系统测试分析。静态力学性能分析表明,随JP含量的增加,JP/LLDPE复合材料的拉伸强度和冲击强度逐渐降低,但复合材料的弯曲强度得到明显的提升。当JP添加量为20wt%时,JP/LLDPE复合材料的弯曲强度最高,较纯LLDPE的弯曲强度提高63.57%;动态力学分析表明,JP含量的增加有利于提高JP/LLDPE复合材料的刚性、抗蠕变性能和抗应力松弛性能,而温度的升高会对JP/LLDPE复合材料的抗蠕变性能和抗应力松弛性能产生不利的影响。

     

  • 图  1  JP和JP/LLDPE复合材料冲击断面的SEM图像

    Figure  1.  SEM images of JP and JP/LLDPE composite impact profiles

    图  2  LLDPE和JP/LLDPE复合材料的静态力学性能

    Figure  2.  Static mechanical properties of LLDPE and JP/LLDPE composites

    图  3  LLDPE和JP/LLDPE复合材料的储能模量 (a) 和损耗因子 (b) 与温度的关系

    Figure  3.  Relationship between storage modulus (a) and loss factor (b) of LLDPE and JP/LLDPE composites with temperature

    图  4  LLDPE和JP/LLDPE复合材料的储能模量 (a) 和损耗因子 (b) 与频率的关系

    Figure  4.  Relationship between storage modulus (a) and loss factor (b) of LLDPE and JP/LLDPE composites with frequency

    图  5  JP/LLDPE 复合材料在不同条件下的蠕变曲线

    Figure  5.  Creep curves of JP/LLDPE composites under different conditions

    图  6  JP/LLDPE复合材料在不同条件下的应力松弛曲线

    Figure  6.  Stress relaxation curves of JP/LLDPE composites under different conditions

    表  1  枣核/低密度聚乙烯(JP/LLDPE)复合材料配方

    Table  1.   Formulations of jujube pit/linear low density polyethylene (JP/LLDPE) composites wt%

    No.10wt% JP/LLDPE20wt% JP/LLDPE30wt% JP/LLDPE40wt% JP/LLDPE50wt% JP/LLDPE
    JP 10 20 30 40 50
    LLDPE 80 70 60 50 40
    TPW604 2 2 2 2 2
    Calcium stearate 2 2 2 2 2
    MAPE 6 6 6 6 6
    Note: MAPE—Maleic anhydride grafted polyethylene.
    下载: 导出CSV

    表  2  JP的组成成分

    Table  2.   Composition of JP wt%

    CelluloseHemicelluloseLigninAshWater extract
    29.73±0.5128.48±0.7531.60±0.451.35±0.368.84±0.58
    下载: 导出CSV
  • [1] 康宁波, 尚梦玉, 何建国, 等. 链式气动冲切自动化干红枣去核机设计[J]. 农业工程学报, 2018, 34(22):19-26. doi: 10.11975/j.issn.1002-6819.2018.22.003

    KANG N B, SHANG M Y, HE J G, et al. Design of chained pneumatic punching automatic dried jujube pit removing machine[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(22):19-26(in Chinese). doi: 10.11975/j.issn.1002-6819.2018.22.003
    [2] 马朝锋, 刘凯, 杨军良, 等. 红枣去核机技术研究进展[J]. 中国农机化学报, 2019, 40(3):108-116.

    MA Z F, LIU K, YANG J L, et al. Progress on the technology of the red jujube kernel removing machine[J]. Journal of Chinese Agricultural Mechanization,2019,40(3):108-116(in Chinese).
    [3] 周靖博, 张淑娟, 孙海霞, 等. 我国红枣去核机的研究现状与发展趋势[J]. 山西农业科学, 2014, 42(2):199-202. doi: 10.3969/j.issn.1002-2481.2014.02.25

    ZHOU J B, ZHANG S J, SUN H X, et al. Research status and development trend of jujube kernel removing machine in China[J]. Journal of Shanxi Agricultural Sciences,2014,42(2):199-202(in Chinese). doi: 10.3969/j.issn.1002-2481.2014.02.25
    [4] PANDHARIPADE S L, MOHARKAR Y, THAKUR R. Synthesis of adsorbents from waste materials such as ziziphus jujube seed & mango kernel[J]. International Journal of Engineering Research and Applications,2012:1337-1341.
    [5] 王清文, 易欣, 沈静. 木塑复合材料在家具制造领域的发展机遇[J]. 林业工程学报, 2016, 1(3):1-8.

    WANG Q W, YI X, SHEN J. Tailoring wood-plastic composites for furniture production: Possibilities and opportunities[J]. China Forestry Science and Technology,2016,1(3):1-8(in Chinese).
    [6] 申婷文, 孙亚楠, 刘一楠, 等. 单板贴面木粉/高密度聚乙烯复合材制备及表面胶合性能研究[J]. 林业工程学报, 2020, 5(4): 101-107.

    SHEN T W, SUN Y N, LIU Y N, et al. Study on preparation and adhesion property of veneer overlaid wood flour/high density polyethylene composites [J]. China Forestry Science and Technology, 2020, 5(4): 101-107(in Chinese).
    [7] 张庆法, 杨科研, 蔡红珍, 等. 稻壳/高密度聚乙烯复合材料与稻壳炭/高密度聚乙烯复合材料性能对比[J]. 复合材料学报, 2018, 35(11):3044-3050.

    ZHANG Q F, YANG K Y, CAI H Z, et al. Comparison of properties between rice husk/high density polyethylene and rice husk biochar/high density polyethylene composites[J]. Acta Materiae Compositae Sinica,2018,35(11):3044-3050(in Chinese).
    [8] MU B, WANG H, HAO X, et al. Morphology, mechanical properties and dimensional stability of biomass particles/high density polyethylene composites: Effect of species and composition[J]. Polymers,2018,10(3):308.
    [9] 朱碧华, 何春霞, 石峰, 等. 三种壳类植物纤维/聚氯乙烯复合材料性能比较[J]. 复合材料学报, 2017, 34(2):291-297.

    ZHU B H, HE C X, SHI F, et al. Performance comparison of three kinds of husk’s fibers/polyvinyl chloride composites[J]. Acta Materiae Compositae Sinica,2017,34(2):291-297(in Chinese).
    [10] 杨莉, 王孝锋, 邹梨花, 等. 混杂工艺对椰壳-大麻/聚丙烯复合材料力学性能的影响[J]. 复合材料学报, 2019, 36(9):2093-2100.

    YANG L, WANG X F, ZHOU L H, et al. Effects of hybrid process on mechanical properties of coir-hemp/polypropylene composites[J]. Acta Materiae Compositae Sinica,2019,36(9):2093-2100(in Chinese).
    [11] 周吓星, 苏国基, 陈礼辉. 竹粉热处理改善竹粉/聚丙烯复合材料的防霉性能[J]. 农业工程学报, 2017, 33(24):308-314. doi: 10.11975/j.issn.1002-6819.2017.24.040

    ZHOU X X, SU G J, CHEN L H. Heat-treated bamboo powder improves anti-mold performance of bamboo powder/polypropylene composites[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(24):308-314(in Chinese). doi: 10.11975/j.issn.1002-6819.2017.24.040
    [12] 中国国家标准化管理委员会, 塑料拉伸性能的测定第 2 部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of People’s Republic of China. Plastics determination of tensile properties-Part 2: Test conditions for moulding and extrusion plastics: GB/T 1040.2—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [13] 中国国家标准化管理委员会, 塑料弯曲性能的测定: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of People’s Republic of China. Plastics-Determination of flexural properties: GB/T 9341—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [14] 中国国家标准化管理委员会, 塑料悬臂梁冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of People’s Republic of China. Plastics-Determination of izod impact strength: GB/T 1843—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [15] 张东红, 周亮, 任夏瑾, 等. 山楂核/聚乙烯复合材料的力学性能与热性能[J]. 塑料科技, 2020, 48(5):71-76.

    ZHANG D H, ZHOU L, REN X J, et al. Mechanical and thermal properties of hawthorn seed/polyethylene composites[J]. Plastics Science and Technology,2020,48(5):71-76(in Chinese).
    [16] ARORA A, NANDAL P, SINGH J, et al. Nanobiotechnological advancements in lignocellulosic biomass pretreatment[J]. Materials Science for Energy Technologies,2020,3:308-318.
    [17] 王博闻, 路琴. 聚氯乙烯/秸秆粉木塑复合材料的性能研究[J]. 中国塑料, 2017, 31(9):62-67.

    WANG B W, LU Q. Study on properties of poly (vinyl chloride)/wheat straw composites[J]. China Plastics,2017,31(9):62-67(in Chinese).
    [18] GAO H, XIE Y, OU R, et al. Grafting effects of polypropylene/polyethylene blends with maleic anhydride on the properties of the resulting wood-plastic composites[J]. Composites Part A: Applied Science and Manufacturing,2012,43(1):150-157.
    [19] HAO X, ZHOU H, WANG Q, et al. Reinforcement of wood flour/HDPE composite with a copolyester of p-hydroxy benzoic acid and 2-hydroxy-6-naphthoic acid: Reinforcement of wood flour/HDPE composite with a copolyester of p-hydroxy benzoic acid and 2-hydroxy-6-naphthoic acid[J]. Journal of Applied Polymer Science,2019,136(15):47338.
    [20] LUO Z, LI P, CAI D, et al. Comparison of performances of corn fiber plastic composites made from different parts of corn stalk[J]. Industrial Crops and Products,2017,95:521-527.
    [21] 龚维, 高家诚, 何力, 等. 微发泡聚丙烯/晶须复合材料的发泡行为与力学性能[J]. 高分子材料科学与工程, 2011, 27(3):67-70, 75.

    GONG W, GAO J C, HE L, et al. Foam behavior and mechanical property of PP/whisker microcellular foam composites[J]. Polymer Materials Science & Engineering,2011,27(3):67-70, 75(in Chinese).
    [22] REN W, ZHANG D, WANG G, et al. Mechanical and thermal properties of bamboo pulp fiber reinforced polyethylene composites[J]. Bioresources,2014,9(3):4117-4127.
    [23] 王翠翠, 程海涛, 羡瑜, 等. 纳米CaCO3增强竹浆纤维/环氧树脂复合材料的动态力学性能[J]. 农业工程学报, 2017, 33(6):281-287. doi: 10.11975/j.issn.1002-6819.2017.06.036

    WANG C C, CHENG H T, XIAN Y, et al. Improving dynamic mechanical property of bamboo pulp fiber reinforced epoxy resin composite treated by nano calcium carbonate[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(6):281-287(in Chinese). doi: 10.11975/j.issn.1002-6819.2017.06.036
    [24] 郝建秀, 杜凤, 王伟宏. 短切碳纤维表面处理对木粉/高密度聚乙烯复合材料性能的影响[J]. 复合材料学报, 2018, 35(2):298-303.

    HAO J X, DU F, WANG W H. Effect of surface treatment of short carbon fibers on the properties of wood flour/high density polyethylene composite[J]. Acta Materiae Compositae Sinica,2018,35(2):298-303(in Chinese).
    [25] 邵笑, 何春霞, 姜彩昀. 木质纤维/PVC复合材料的蠕变和热稳定性[J]. 材料科学与工程学报, 2019, 37(6):991-995.

    SHAO X, HE C X, JIANG C Y. Study on creep and thermal stability of wood fiber/PVC composites[J]. Journal of Materials Science and Engineering,2019,37(6):991-995(in Chinese).
    [26] TAMRAKAR S, LOPEZANIDO R, KIZILTAS A, et al. Time and temperature dependent response of a wood-polypropylene composite[J]. Composites Part A: Applied Science and Manufacturing,2011,42(7):834-842.
    [27] 韦春, 曾思华, 黄绍军, 等. 剑麻纤维素微晶增强酚醛树脂复合材料的制备及性能[J]. 复合材料学报, 2013, 30(S1):306-310.

    WEI C, ZENG S H, HUANG S J, et al. Preparation and properties of sisal fiber cellulose microcrystal reinforced phenol-formaldehyde resins composites[J]. Acta Materiae Compositae Sinica,2013,30(S1):306-310(in Chinese).
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  653
  • HTML全文浏览量:  286
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 录用日期:  2020-08-30
  • 网络出版日期:  2020-09-10
  • 刊出日期:  2021-06-23

目录

    /

    返回文章
    返回