留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液相夹杂复合软材料的设计、制备与力学性能研究进展

李锡英 王爽 鲁璐 吕鹏宇 易新 段慧玲

李锡英, 王爽, 鲁璐, 等. 液相夹杂复合软材料的设计、制备与力学性能研究进展[J]. 复合材料学报, 2021, 38(1): 1-15. doi: 10.13801/j.cnki.fhclxb.20200909.003
引用本文: 李锡英, 王爽, 鲁璐, 等. 液相夹杂复合软材料的设计、制备与力学性能研究进展[J]. 复合材料学报, 2021, 38(1): 1-15. doi: 10.13801/j.cnki.fhclxb.20200909.003
LI Xiying, WANG Shuang, LU Lu, et al. Design, fabrication and mechanical properties of soft composites with liquid inclusions[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 1-15. doi: 10.13801/j.cnki.fhclxb.20200909.003
Citation: LI Xiying, WANG Shuang, LU Lu, et al. Design, fabrication and mechanical properties of soft composites with liquid inclusions[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 1-15. doi: 10.13801/j.cnki.fhclxb.20200909.003

液相夹杂复合软材料的设计、制备与力学性能研究进展

doi: 10.13801/j.cnki.fhclxb.20200909.003
基金项目: 国家自然科学基金(91848201; 11988102; 11521202; 11872004; 11802004);中国科协青年人才托举工程(2017QNRC001)
详细信息
    通讯作者:

    段慧玲,博士,教授,博士生导师,研究方向为弹性力学、非均质材料力学与流固耦合力学等  E-mail:hlduan@pku.edu.cn

  • 中图分类号: TB381

Design, fabrication and mechanical properties of soft composites with liquid inclusions

  • 摘要: 液相夹杂复合软材料是一类由功能液体或相变材料作为夹杂物的智能材料,由于其具备优异的变形特性和功能可设计性,近年来在柔性电子器件、可穿戴设备、软体机器人等领域得到广泛研究和应用。本文从以下几个方面回顾液相夹杂复合软材料的最新研究进展:首先,重点介绍非相变夹杂和相变夹杂复合软材料的功能设计及制备方法;然后,详细阐述液相夹杂复合软材料等效力学性能研究及尺寸效应;最后,简要探讨液相夹杂复合软材料研究所面临的挑战及值得关注的研究方向。

     

  • 图  1  含离子液体的多层复合软纤维示意图(a)及离子液体柔性传感器及其运动检测功能展示(b)[29]

    Figure  1.  Schematic of a multilayer soft fiber containing ionic liquid (a), demonstration of soft sensors with ionic liquid and motion detection (b)[29]

    图  2  磁流体及其外磁场响应(a)[32]及具有磁响应变形和形状记忆特性的磁流体复合软材料(b)[33]

    Figure  2.  Magnetic fluid and its response to external magnetic field (a)[32], magnetic shape-memory in soft composites with magnetic fluid inclusions (b)[33]

    图  3  液态金属流动性(a)[39]、具有高热导系数的液态金属复合软材料(b)[49]及液态金属复合软材料应用于多层电路(Ⅰ)、柔性传感器(Ⅱ)、按压开关(Ⅲ) (c)[59]

    Figure  3.  Fluidity demonstration of liquid metal (a)[39], liquid metal embedded soft composites with high thermal conductivity (b)[49], applications of soft composites with liquid metal inclusions in multilayer circuit (Ⅰ), flexibility sensor (Ⅱ), push switch (Ⅲ) (c)[59]

    图  4  不同类型复合软材料的断裂示意图(a)及含裂纹液态金属夹杂复合软材料薄膜单向拉伸变形(b)[66]

    Figure  4.  Schematics of different modes of crack propagation in soft composites (a), uniaxial tensile behavior of notched soft composite film with liquid metal inclusions (b)[66]

    图  5  低熔点合金相变复合软材料的微观结构(a)及其在不同温度下的变形(b)[81]

    Figure  5.  Microstructure of soft composites with low-melting alloy (a) and composite deformation at different temperatures (b)[81]

    图  6  基于乙醇夹杂相变复合软材料的微爬行器设计(a)及微爬行器的运动表征(b)[93]

    Figure  6.  Design (a) and motion characterization (b) of micro-crawler based on soft composites with ethanol inclusions[93]

    图  7  液相夹杂复合材料制备方法: (a)共混搅拌[48]; (b)机械注入[94]; (c)微流控3D打印[69]

    Figure  7.  Methods for preparation of composites with liquid inclusions: (a) Blending and stirring[48]; (b) Mechanical injection[94]; (c) Microfluidics based 3D printing[69]

    图  8  乙醇夹杂相变复合软材料的宏观力学性能[93]:(a)应力-应变曲线; (b)相对热膨胀系数

    Figure  8.  Macro-mechanical properties of soft composites with ethanol inclusions[93]:(a) Stress-strain curves at different internal pressures; (b) Relative coefficient of thermal expansion

    图  9  液相夹杂复合软材料的单轴拉伸试验[65]: (a)不同尺寸液相夹杂的变形; (b)等效杨氏模量随夹杂体积分数的变化

    Figure  9.  Uniaxial tensile test of soft composite with liquid inclusions[65]: (a) Deformation of liquid inclusions of different sizes; (b) Effective Young’s modulus Ee of soft composites as a function of the liquid inclusion volume fraction f

    图  10  在单轴远场载荷作用下不可压缩固体中液相夹杂特征参数随ξ=γ/(ER)的变化[119]: (a)液相夹杂的变形应变; (b)剪切应力集中系数;(c)剪切应力集中系数云图

    Figure  10.  Liquid inclusion characteristics as a function of ξ=γ/(ER) for inclusions in an incompressible solid matrix upon uniaxial far-field loading[119]: (a) Droplet strain; (b) Shear-stress concentration; (c) Shear-stress distribution

    图  11  含有高介电常数球形液相夹杂的介电弹性复合软材料的等效电致伸缩系数(a)及电致伸缩变形(b)[123]

    Figure  11.  Effective electrostriction coefficients (a) and electrostrictive strain (b) of a nearly incompressible dielectric elastomer filled with liquid-like high permittivity spherical particles[123]

    表  1  室温下(25℃)常见离子液体的基本物理参数[21]

    Table  1.   Physical properties of some ionic liquids at room temperature (25℃)[21]

    Ionic liquidDensity/(g·cm−3)Viscosity/(mPa·s)Electronic conductivity/
    (mS·cm−1)
    Surface tension/
    (mN·m−1) b[22]
    Thermal conductivity/
    (W(m·K)−1)[23]
    [BMIM][BF4] 1.175 119.78 50.7 a 43.6 0.172
    [BMIM][PF6] 1.363 207 1.8 47.5 0.152
    [BMIM][NTF2] 1.429 52 3.9 31.5 0.135
    [EMIM][BF4] 1.279 32 14.0 44.3 0.200[24]
    [EMIM][NTF2] 1.518 34 9.2 40.5 0.145
    Notes: [BMIM][BF4]—1-Butyl-3-methylimidazolium tetrafluoroborate; [BMIM][PF6]—1-Butyl-3-methyl imidazolium hexafluorophosphate; [BMIM][NTF2]—1-Butyl-1-methylpyrrolidinium bis(trifluoromethyl sulfonyl)imide; [EMIM][BF4]—1-Ethyl-3-methylimidazolium tetrafluoroborate; [EMIM][NTF2]—1-Ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide; a Data was obtained at 30℃; b Data was obtained from the interface between the tested liquid and air.
    下载: 导出CSV

    表  2  磁流体的典型物性参数[31]

    Table  2.   Physical properties of typical magnetic fluid[31]

    PropertyTypical value
    Density/(g·cm–3) 3–4
    Initial viscosity/(Pa·s) 0.1–1.0
    Maximum yield strength/kPa 50–100
    Reaction time/(10–3 s) 10–20
    下载: 导出CSV

    表  3  室温下液态金属物理参数[40]

    Table  3.   Physical properties of liquid metal at room temperature[40]

    PropertyEGaInGalinstanHg
    Density/(g·cm−3) 6.28 6.44 1.35
    Viscosity/(mPa·s) 2.0 2.4 1.5
    Surface tension/(mN·m−1) 624 718 487
    Electrical conductivity/(105 mS·cm−1) 3.4 3.46 1
    Thermal conductivity/(W(m·K)−1) a[41] 26.4 25.4 8.18[42]
    Note: a Data was obtained at 37℃.
    下载: 导出CSV
  • [1] SADASIVUNI K K, CABIBIHAN J J, PONNAMMA D, et al. Biopolymer composites in electronics[M]. Cambridge: Elsevier, 2016.
    [2] HAMMOCK M L, CHORTOS A, TEE K B C, et al. The evolution of electronic skin (E-skin): A brief history, design considerations, and recent progress[J]. Advanced Materials,2013,25(42):5997-6038. doi: 10.1002/adma.201302240
    [3] RICH S I, WOOD R J, MAJIDI C. Untethered soft robotic[J]. Nature Electronics,2018,1:102-112. doi: 10.1038/s41928-018-0024-1
    [4] HU J, MENG H, LI G, et al. A review of stimuli-responsive polymers for smart textile applications[J]. Smart Materials and Structures,2012,21(5):053001. doi: 10.1088/0964-1726/21/5/053001
    [5] HU C, PANÉ S, NELSON B J. Soft micro-and nanorobotics[J]. Annual Review of Control, Robotics, and Autonomous Systems,2018,1:53-75. doi: 10.1146/annurev-control-060117-104947
    [6] WANG C, WANG C, HUANG Z, et al. Materials and structures toward soft electronics[J]. Advanced Materials,2018,30(50):1801368. doi: 10.1002/adma.201801368
    [7] SHINTAKE J, CACUCCIOLO V, FLOREANO D, et al. Soft robotic grippers[J]. Advanced Materials,2018,30(29):1707035. doi: 10.1002/adma.201707035
    [8] PIAZZA C, GRIOLI G, CATALANO M G, et al. A century of robotic hands[J]. Annual Review of Control, Robotics, and Autonomous Systems,2019,2:1-32. doi: 10.1146/annurev-control-060117-105003
    [9] MCEVOY M A, CORRELL N. Materials that couple sensing, actuation, computation, and communication[J]. Science,2015,347(6228):1261689. doi: 10.1126/science.1261689
    [10] 许阳光, 龚兴龙, 万强, 等. 磁敏智能软材料及磁流变机理[J]. 力学进展, 2015, 45(1):461-495.

    XU Yangguang, GONG Xinglong, WAN Qiang, et al. Magneto-sensitive smart soft material and magnetorheological mechanism[J]. Advances in Mechanics,2015,45(1):461-495(in Chinese).
    [11] NARAYANA K J, BURELA R G. A review of recent research on multifunctional composite materials and structures with their applications[J]. Materials Today,2018,5(2):5580-5590.
    [12] THONIYOT P, TAN M J, KARIM A A, et al. Nanoparticle-hydrogel composites: Concept, design, and applications of these promising, multi-functional materials[J]. Advanced Science,2015,2(1-2):1400010. doi: 10.1002/advs.201400010
    [13] GLADMAN A S, MATSUMOTO E A, NUZZO R G, et al. Biomimetic 4D printing[J]. Nature Materials,2016,15:413-418. doi: 10.1038/nmat4544
    [14] GALLONE G, CARPI F, DE ROSSI D, et al. Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobite-lead titanate[J]. Materials Science and Engineering C,2007,27(1):110-116. doi: 10.1016/j.msec.2006.03.003
    [15] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science,2016,59:41-85. doi: 10.1016/j.progpolymsci.2016.03.001
    [16] BARTLETT M D, STYLE R W. Introduction to liquid composites[J]. Soft Matter,2020,16:5799-5800. doi: 10.1039/D0SM90113J
    [17] OWUOR P S, HIREMATH S, CHIPARA A C, et al. Nature inspired strategy to enhance mechanical properties via liquid reinforcement[J]. Advanced Materials Interfaces,2017,4(16):1700240. doi: 10.1002/admi.201700240
    [18] PENG J, CHENG Q. High-performance nanocomposites inspired by nature[J]. Advanced Materials,2017,29(45):1702959. doi: 10.1002/adma.201702959
    [19] GREEN O, GRUBJESIC S, LEE S, et al. The design of polymeric ionic liquids for the preparation of functional materials[J]. Polymer Reviews,2009,49(4):339-360. doi: 10.1080/15583720903291116
    [20] SINGH V V, NIGAM A K, BATRA A, et al. Applications of ionic liquids in electrochemical sensors and biosensors[J]. International Journal of Electrochemistry,2012,2012:165683.
    [21] WASSERSCHEID P, WELTON T. Ionic liquids in synthesis[M]. Weinheim: John Wiley & Sons, 2008.
    [22] TARIQ M, FREIRE M G, SARAMAGO B, et al. Surface tension of ionic liquids and ionic liquid solutions[J]. Chemical Society Reviews,2012,41(2):829-868. doi: 10.1039/C1CS15146K
    [23] SHOJAEE S A, FARZAM S, HEZAVE A Z, et al. A new correlation for estimating thermal conductivity of pure ionic liquids[J]. Fluid Phase Equilibria,2013,354:199-206. doi: 10.1016/j.fluid.2013.06.004
    [24] VAN VALKENBURG M E, VAUGHN R L, WILLIAMS M, et al. Thermochemistry of ionic liquid heat-transfer fluids[J]. Thermochimica Acta,2005,425(1-2):181-188. doi: 10.1016/j.tca.2004.11.013
    [25] KEPLINGER C, SUN J Y, FOO C C, et al. Stretchable, transparent, ionic conductors[J]. Science,2013,341(6149):984-987. doi: 10.1126/science.1240228
    [26] SUN J Y, KEPLINGER C, WHITESIDES G M, et al. Ionic skin[J]. Advanced Materials,2014,26(45):7608-7614. doi: 10.1002/adma.201403441
    [27] KIM C C, LEE H H, OH K H, et al. Highly stretchable, transparent ionic touch panel[J]. Science,2016,353(6300):682-687. doi: 10.1126/science.aaf8810
    [28] YOON S G, KOO H J, CHANG S T. Highly stretchable and transparent microfluidic strain sensors for monitoring human body motions[J]. ACS Applied Materials & Interfaces,2015,7(49):27562-27570.
    [29] FRUTIGER A, MUTH J T, VOGT D M, et al. Capacitive soft strain sensors via multicore-shell fiber printing[J]. Advanced Materials,2015,27(15):2440-2446. doi: 10.1002/adma.201500072
    [30] 张继松, 何虹, 杨仁富. 磁流体及其应用[J]. 磁性元件与电源, 2015(4):133-138, 143.

    ZHANG Jisong, HE Hong, YANG Renfu. Magnetofluid and its applications[J]. Magnetic Element and Power Supply,2015(4):133-138, 143(in Chinese).
    [31] CARLSON J D, JOLLY M R. MR fluid, foam and elastomer devices[J]. Mechatronics,2000,10(4-5):555-569. doi: 10.1016/S0957-4158(99)00064-1
    [32] JACKSON J A, MESSNER M C, DUDUKOVIC N A, et al. Field responsive mechanical metamaterials[J]. Science Advances,2018,4(12):eaau6419. doi: 10.1126/sciadv.aau6419
    [33] TESTA P, STYLE R W, CUI J, et al. Magnetically addressable shape-memory and stiffening in a composite elastomer[J]. Advanced Materials,2019,31(29):1900561. doi: 10.1002/adma.201900561
    [34] VISAKH P M, THOMAS S, CHANDRA A K, et al. Advances in elastomers[M]. Berlin: Springer, 2013.
    [35] LI Y, LI J, LI W, et al. A state-of-the-art review on magnetorheological elastomer devices[J]. Smart Materials and Structures,2014,23(12):123001. doi: 10.1088/0964-1726/23/12/123001
    [36] BOUTEVIN B, BOYER C, CSETNEKI I, et al. Oligomers-polymer composites-molecular imprinting[M]. Berlin: Springer, 2007.
    [37] FU Y, YAO J, ZHAO H, et al. A muscle-like magnetorheological actuator based on bidisperse magnetic particles enhanced flexible alginate-gelatin sponges[J]. Smart Materials and Structures,2020,29(1):015019. doi: 10.1088/1361-665X/ab515f
    [38] WANG H, TOTARO M, BLANDIN A A, et al. A wireless inductive sensing technology for soft pneumatic actuators using magnetorheological elastomers[C]//2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). Seoul: IEEE, 2019: 242-248.
    [39] CHEN S, YANG X, CUI Y, et al. Self-growing and serpentine locomotion of liquid metal induced by copper ions[J]. ACS Applied Materials & Interfaces,2018,10(27):22889-22895.
    [40] CHENG S, WU Z. Microfluidic electronics[J]. Lab on a Chip,2012,12(16):2782-2791. doi: 10.1039/c2lc21176a
    [41] YU S, KAVIANY M. Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles[J]. The Journal of Chemical Physics,2014,140(6):064303. doi: 10.1063/1.4865105
    [42] HODES M, ZHANG R, LAM L S, et al. On the potential of galinstan-based minichannel and minigap cooling[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2013,4(1):46-56.
    [43] HIRSCH A, MICHAUD H O, GERRATT A P, et al. Intrinsically stretchable biphasic (solid-liquid) thin metal films[J]. Advanced Materials,2016,28(22):4507-4512. doi: 10.1002/adma.201506234
    [44] LADD C, SO J H, MUTH J, et al. 3D printing of free standing liquid metal microstructures[J]. Advanced Materials,2013,25(36):5081-5085. doi: 10.1002/adma.201301400
    [45] KAZEM N, HELLEBREKERS T, MAJIDI C. Soft multifunctional composites and emulsions with liquid metals[J]. Advanced Materials,2017,29(27):1605985. doi: 10.1002/adma.201605985
    [46] DICKEY M D. Stretchable and soft electronics using liquid metals[J]. Advanced Materials,2017,29(27):1606425. doi: 10.1002/adma.201606425
    [47] WISSMAN J, DICKEY M D, MAJIDI C. Field-controlled electrical switch with liquid metal[J]. Advanced Science,2017,4(12):1700169. doi: 10.1002/advs.201700169
    [48] JEONG S H, CHEN S, HUO J, et al. Mechanically stretchable and electrically insulating thermal elastomer composite by liquid alloy droplet embedment[J]. Scientific Reports,2016,5:18257. doi: 10.1038/srep18257
    [49] BARTLETT M D, KAZEM N, POWELL-PALM M J, et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(9):2143-2148. doi: 10.1073/pnas.1616377114
    [50] RALPHS M I, KEMME N, VARTAK P B, et al. In situ alloying of thermally conductive polymer composites by combining liquid and solid metal microadditives[J]. ACS Applied Materials & Interfaces,2018,10(2):2083-2092.
    [51] TUTIKA R, ZHOU S H, NAPOLITANO R E, et al. Mechanical and functional tradeoffs in multiphase liquid metal, solid particle soft composites[J]. Advanced Functional Materials,2018,28(45):1804336. doi: 10.1002/adfm.201804336
    [52] FASSLER A, MAJIDI C. Liquid-phase metal inclusions for a conductive polymer composite[J]. Advanced Materials,2015,27(11):1928-1932. doi: 10.1002/adma.201405256
    [53] YU Z, SHANG J, NIU X, et al. A composite elastic conductor with high dynamic stability based on 3D-Calabash Bunch conductive network structure for wearable devices[J]. Advanced Electronic Materials,2018,4(9):1800137. doi: 10.1002/aelm.201800137
    [54] KOH A, SIETINS J, SLIPHER G, et al. Deformable liquid metal polymer composites with tunable electronic and mechanical properties[J]. Journal of Materials Research,2018,33(17):2443-2453. doi: 10.1557/jmr.2018.209
    [55] BILODEAU R A, NASAB A M, SHAH D S, et al. Uniform conductivity in stretchable silicones via multiphase inclusions[J]. Soft Matter,2020,16:5827-5839. doi: 10.1039/D0SM00383B
    [56] MARKVICKA E J, BARTLETT M D, HUANG X, et al. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics[J]. Nature Materials,2018,17:618-624. doi: 10.1038/s41563-018-0084-7
    [57] MALAKOOTI M H, BOCKSTALLER M R, KRZYSZTOF K, et al. Liquid metal nanocomposites[J]. Nanoscale Advances,2020,2:2668-2677. doi: 10.1039/D0NA00148A
    [58] MALAKOOTI M H, KAZEM N, YAN J, et al. Liquid metal supercooling for low-temperature thermoelectric wearables[J]. Advanced Functional Materials,2019,29(45):1906098. doi: 10.1002/adfm.201906098
    [59] ZHOU L, FU J, GAO Q, et al. All-printed flexible and stretchable electronics with pressing or freezing activatable liquid-metal-silicone inks[J]. Advanced Functional Materials,2020,30(3):1906683. doi: 10.1002/adfm.201906683
    [60] SHAY T, VELEV O D, DICKEY M D. Soft electrodes combining hydrogel and liquid metal[J]. Soft Matter,2018,14:3296-3303. doi: 10.1039/C8SM00337H
    [61] MICHAEL F, PALANISWAMY M, AMBULO C P, et al. Size of liquid metal particles influences actuation properties of a liquid crystal elastomer composite[J]. Soft Matter,2020,16:5878-5885. doi: 10.1039/D0SM00278J
    [62] BARTLETT M D, FASSLER A, KAZEM N, et al. Stretchable, high-k dielectric elastomers through liquid-metal inclusions[J]. Advanced Materials,2016,28(19):3726-3731. doi: 10.1002/adma.201506243
    [63] PAN C, MARKVICKA E J, MALAKOOTI M H, et al. A liquid-metal-elastomer nanocomposite for stretchable dielectric materials[J]. Advanced Materials,2019,31(23):1900663. doi: 10.1002/adma.201900663
    [64] SŁAWIŃSKI G, NIEZGODA T, GIELETA R, et al. Research protective shield, elastomer-liquid against impact shock wave[J]. Journal of KONES Powertrain and Transport,2015,22(4):295-300. doi: 10.5604/12314005.1168498
    [65] STYLE R W, BOLTYANSKIY R, ALLEN B, et al. Stiffening solids with liquid inclusions[J]. Nature Physics,2015,11:82-87. doi: 10.1038/nphys3181
    [66] KAZEM N, BARTLETT M D, MAJIDI C. Extreme toughening of soft materials with liquid metal[J]. Advanced Materials,2018,30(22):1706594. doi: 10.1002/adma.201706594
    [67] CHIPARA A C, OWUOR P S, BHOWMICK S, et al. Structural reinforcement through liquid encapsulation[J]. Advanced Materials Interfaces,2017,4(2):1600781. doi: 10.1002/admi.201600781
    [68] KONG W, SHAH N U H, NEUMANN T V, et al. Oxide-mediated mechanisms of gallium foam generation and stabilization during shear mixing in air[J]. Soft Matter,2020,16:5801-5805. doi: 10.1039/D0SM00503G
    [69] LI X, ZHANG J M, YI X, et al. Multimaterial microfluidic 3D printing of textured composites with liquid inclusions[J]. Advanced Science,2019,6(3):1800730. doi: 10.1002/advs.201800730
    [70] ZHANG P, XIAO X, MA Z W. A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy,2016,165:472-510. doi: 10.1016/j.apenergy.2015.12.043
    [71] ZHANG Y, LI W, HUANG J, et al. Expanded graphite/paraffin/silicone rubber as high temperature form-stabilized phase change materials for thermal energy storage and thermal interface materials[J]. Materials,2020,13(4):894. doi: 10.3390/ma13040894
    [72] JILTE R D, KUMAR R, AHMADI M H, et al. Battery thermal management system employing phase change material with cell-to-cell air cooling[J]. Applied Thermal Engineering,2019,161:114199. doi: 10.1016/j.applthermaleng.2019.114199
    [73] HUANG Y H, CHENG W L, ZHAO R. Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials[J]. Energy Conversion and Management,2019,182:9-20. doi: 10.1016/j.enconman.2018.12.064
    [74] OGDEN S, KLINTBERG L, THORNELL G, et al. Review on miniaturized paraffin phase change actuators, valves, and pumps[J]. Microfluidics and Nanofluidics,2014,17:53-71. doi: 10.1007/s10404-013-1289-3
    [75] LI J, ZHANG F, HU Z, et al. Drug “pent-up” in hollow magnetic Prussian blue nanoparticles for NIR-induced chemo-photothermal tumor therapy with trimodal imaging[J]. Advanced Healthcare Materials,2017,6(14):1700005. doi: 10.1002/adhm.201700005
    [76] TONAZZINI A, MINTCHEV S, SCHUBERT B, et al. Variable stiffness fiber with self-healing capability[J]. Advanced Materials,2016,28(46):10142-10148. doi: 10.1002/adma.201602580
    [77] WILHELM E, RICHTER C, RAPP B E. Phase change materials in microactuators: Basics, applications and perspectives[J]. Sensors and Actuators A,2018,271:303-347. doi: 10.1016/j.sna.2018.01.043
    [78] GULFAM R, ZHANG P, MENG Z. Advanced thermal systems driven by paraffin-based phase change materials: A review[J]. Applied Energy,2019,238:582-611. doi: 10.1016/j.apenergy.2019.01.114
    [79] SCHUBERT B E, FLOREANO D. Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly(dimethylsiloxane) (PDMS)[J]. RSC Advances,2013,3(46):24671-24679. doi: 10.1039/c3ra44412k
    [80] BILODEAU R A, YUEN M C, KRAMER-BOTTIGLIO R. Addressable, stretchable heating silicone sheets[J]. Advanced Materials Technologies,2019,4(9):1900276. doi: 10.1002/admt.201900276
    [81] MEERBEEK I M V, MURRAY B C M, KIM J W, et al. Morphing metal and elastomer bicontinuous foams for reversible stiffness, shape memory, and self-healing soft machines[J]. Advanced Materials,2016,28(14):2801-2806. doi: 10.1002/adma.201505991
    [82] SONG G E, KIM K H, LEE Y P. Simulation and experiments for a phase-change actuator with bistable membrane[J]. Sensors and Actuators A: Physical,2007,136(2):665-672. doi: 10.1016/j.sna.2006.12.018
    [83] ZHOU Z, LI Q, CHEN L, et al. A large-deformation phase transition electrothermal actuator based on carbon nanotube-elastomer composites[J]. Journal of Materials Chemistry B,2016,4(7):1228-1234. doi: 10.1039/C5TB02715B
    [84] MATSUOKA H, SUZUMORI K, KANDA T. Development of a gas/liquid phase change actuator for high temperatures[J]. ROBOMECH Journal,2016,3:1. doi: 10.1186/s40648-016-0041-7
    [85] MIRIYEV A, STACK K, LIPSON H. Soft material for soft actuators[J]. Nature Communications,2017,8:596. doi: 10.1038/s41467-017-00685-3
    [86] NAKAHARA K, NARUMI K, NIIYAMA R, et al. Electric phase-change actuator with inkjet printed flexible circuit for printable and integrated robot prototyping[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore: IEEE, 2017: 1856-1863.
    [87] AN S, KANG D J, YARIN A L. A blister-like soft nano-textured thermo-pneumatic actuator as an artificial muscle[J]. Nanoscale,2018,10(35):16591-16600. doi: 10.1039/C8NR04181D
    [88] MIRIYEV A, TRUJILLO C, CAIRES G, et al. Rejuvenation of soft material-actuator[J]. MRS Communications,2018,8(2):556-561. doi: 10.1557/mrc.2018.30
    [89] HUANG Y, HU W, WANG X, et al. A low-voltage graphene/Ag-based phase transition-controlled force actuator[J]. Composites Part B: Engineering,2019,174:106912. doi: 10.1016/j.compositesb.2019.106912
    [90] HAN J, JIANG W, NIU D, et al. Untethered soft actuators by liquid-vapor phase transition: Remote and programmable actuation[J]. Advanced Intelligent Systems,2019,1(8):1900109. doi: 10.1002/aisy.201900109
    [91] NISHIKAWA Y, MATSUMOTO M. A design of fully soft robot actuated by gas-liquid phase change[J]. Advanced Robotics,2019,33(12):567-575. doi: 10.1080/01691864.2019.1626281
    [92] CARRICO J D, TYLER T, LEANG K K. A comprehensive review of select smart polymeric and gel actuators for soft mechatronics and robotics applications: Fundamentals, freeform fabrication, and motion control[J]. International Journal of Smart and Nano Materials,2017,8(4):144-213. doi: 10.1080/19475411.2018.1438534
    [93] LI X, DUAN H L, LV P, et al. Soft actuators based on liquid-vapor phase change composites[J]. Soft Robotics,2020:DOI: 10.1089/soro.2020.0018.
    [94] LEROY V, STRYBULEVYCH A, PAGE J H, et al. Sound velocity and attenuation in bubbly gels measured by transmission experiments[J]. The Journal of the Acoustical Society of America,2008,123(4):1931-1940. doi: 10.1121/1.2875420
    [95] BRUNET T, RAFFY S, MASCARO B, et al. Sharp acoustic multipolar-resonances in highly monodisperse emulsions[J]. Applied Physics Letters,2012,101(1):011913. doi: 10.1063/1.4733615
    [96] MEA H J, DELGADILLO L, WAN J. On-demand modulation of 3D-printed elastomers using programmable droplet inclusions[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(26):14790-14797. doi: 10.1073/pnas.1917289117
    [97] VISSER C W, KAMPERMAN T, KARBAAT L P, et al. In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials[J]. Science Advances,2018,4(1):eaao1175. doi: 10.1126/sciadv.aao1175
    [98] VISSER C W, AMATO D N, MUELLER J, et al. Architected polymer foams via direct bubble writing[J]. Advanced Materials,2019,31(46):1904668. doi: 10.1002/adma.201904668
    [99] DAI M, HUA J, SCHIAVONE P. Compressible liquid/gas inclusion with high initial pressure in plane deformation: Modified boundary conditions and related analytical solutions[J]. European Journal of Mechanics A: Solids,2020,82:104000. doi: 10.1016/j.euromechsol.2020.104000
    [100] LIU M, WU J, GAN Y, et al. The pore-load modulus of ordered nanoporous materials with surface effects[J]. AIP Advances,2016,6(3):035324. doi: 10.1063/1.4945441
    [101] LIU M, ZHANG Y, WU J, et al. Analytical solutions for elastic response of coated mesoporous materials to pore pressure[J]. International Journal of Engineering Science,2016,107:68-76. doi: 10.1016/j.ijengsci.2016.07.010
    [102] LIU M, WU J, GAN Y, et al. Multiscale modeling of the effective elastic properties of fluid-filled porous materials[J]. International Journal of Solids and Structures,2019,162:36-44. doi: 10.1016/j.ijsolstr.2018.11.028
    [103] WU J, RU C Q, ZHANG L. An elliptical liquid inclusion in an infinite elastic plane[J]. Proceedings of the Royal Society A,2018,474(2215):20170813. doi: 10.1098/rspa.2017.0813
    [104] DAI M, LI M, SCHIAVONE P. Plane deformations of an inhomogeneity-matrix system incorporating a compressible liquid inhomogeneity and complete Gurtin-Murdoch interface model[J]. Journal of Applied Mechanics,2018,85(12):121010. doi: 10.1115/1.4041469
    [105] BUDIANSKY B, O'CONNELL R J. Elastic moduli of a cracked solid[J]. International Journal of Solids and structures,1976,12(2):81-97. doi: 10.1016/0020-7683(76)90044-5
    [106] YOON Y J, COWIN S C. The elastic moduli estimation of the solid-water mixture[J]. International Journal of Solids and Structures,2009,46(3-4):527-533. doi: 10.1016/j.ijsolstr.2008.09.010
    [107] SHAFIRO B, KACHANOV M. Materials with fluid-filled pores of various shapes: Effective elastic properties and fluid pressure polarization[J]. International Journal of Solids and Structures,1997,34(27):3517-3540. doi: 10.1016/S0020-7683(96)00185-0
    [108] DAVID E C, ZIMMERMAN R W. Compressibility and shear compliance of spheroidal pores: Exact derivation via the Eshelby tensor, and asymptotic expressions in limiting cases[J]. International Journal of Solids and Structures,2011,48(5):680-686. doi: 10.1016/j.ijsolstr.2010.11.001
    [109] CHEN X, LI M, YANG M, et al. The elastic fields of a compressible liquid inclusion[J]. Extreme Mechanics Letters,2018,22:122-130. doi: 10.1016/j.eml.2018.06.002
    [110] CHEN X, HE W, LIU S, et al. Volumetric response of an ellipsoidal liquid inclusion: Implications for cell mechanobiology[J]. Acta Mechanica Sinica,2019,35(2):338-342. doi: 10.1007/s10409-019-00850-5
    [111] ZIMMERMAN R W. Thermal conductivity of fluid-saturated rocks[J]. Journal of Petroleum Science and Engineering,1989,3(3):219-227. doi: 10.1016/0920-4105(89)90019-3
    [112] MARKOV M, LEVIN V, MOUSATOV A, et al. Effective thermal conductivity of inhomogeneous medium containing gas-filled inclusions[J]. Mathematical Methods in the Applied Sciences,2017,40(9):3283-3289. doi: 10.1002/mma.3800
    [113] MANCARELLA F, STYLE R W, WETTLAUFER J S. Surface tension and the Mori-Tanaka theory of non-dilute soft composite solids[J]. Proceedings of the Royal Society A,2016,472(2189):20150853. doi: 10.1098/rspa.2015.0853
    [114] YANG S, SHARMA P. Eshelby’s tensor for embedded inclusions and the Elasto-Capillary phenomenon[J]. Journal of Micromechanics and Molecular Physics,2016,1(03n04):1630002. doi: 10.1142/S2424913016300024
    [115] DUAN H L, WANG J, HUANG Z P, et al. Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress[J]. Journal of the Mechanics and Physics of Solids,2005,53(7):1574-1596. doi: 10.1016/j.jmps.2005.02.009
    [116] DUAN H L, WANG J, HUANG Z P, et al. Eshelby formalism for nano-inhomogeneities[J]. Proceedings of the Royal Society A,2005,461(2062):3335-3353. doi: 10.1098/rspa.2005.1520
    [117] DUAN H L, YI X, HUANG Z P, et al. A unified scheme for prediction of effective moduli of multiphase composites with interface effects Part Ⅰ: Theoretical framework[J]. Mechanics of Materials,2007,39(1):81-93. doi: 10.1016/j.mechmat.2006.02.009
    [118] DUAN H L, YI X, HUANG Z P, et al. A unified scheme for prediction of effective moduli of multiphase composites with interface effects Part Ⅱ: Application and scaling laws[J]. Mechanics of Materials,2007,39(1):94-103. doi: 10.1016/j.mechmat.2006.02.010
    [119] STYLE R W, WETTLAUFER J S, DUFRESNE E R. Surface tension and the mechanics of liquid inclusions in compliant solids[J]. Soft Matter,2015,11(4):672-679. doi: 10.1039/C4SM02413C
    [120] MANCARELLA F, WETTLAUFER J S. Surface tension and a self-consistent theory of soft composite solids with elastic inclusions[J]. Soft Matter,2017,13(5):945-955. doi: 10.1039/C6SM02396G
    [121] MANCARELLA F, STYLE R W, WETTLAUFER J S. Interfacial tension and a three-phase generalized self-consistent theory of non-dilute soft composite solids[J]. Soft matter,2016,12(10):2744-2750. doi: 10.1039/C5SM03029C
    [122] QUANG H L, XU Y, HE Q C. Size-and shape-dependent effective conductivity of porous media with spheroidal gas-filled inclusions[J]. Meccanica,2018,53(11-12):2743-2772. doi: 10.1007/s11012-018-0864-9
    [123] KRICHEN S, LIU L, SHARMA P. Liquid inclusions in soft materials: Capillary effect, mechanical stiffening and enhanced electromechanical response[J]. Journal of the Mechanics and Physics of Solids,2019,127:332-357. doi: 10.1016/j.jmps.2019.03.010
    [124] WANG Y, HENANN D L. Finite-element modeling of soft solids with liquid inclusions[J]. Extreme Mechanics Letters,2016,9:147-157. doi: 10.1016/j.eml.2016.06.002
    [125] LIANG H, CAO Z, DOBRYNIN A V. Molecular dynamics simulations of the effect of elastocapillarity on reinforcement of soft polymeric materials by liquid inclusions[J]. Macromolecules,2016,49(18):7108-7115. doi: 10.1021/acs.macromol.6b01499
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1650
  • HTML全文浏览量:  583
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-20
  • 录用日期:  2020-08-08
  • 网络出版日期:  2020-09-10
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回