留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温对钢纤维-聚乙烯醇纤维-CaCO3晶须多尺度纤维/水泥复合材料弯曲性能和微观结构的影响

李黎 李宗利 高丹盈 曹明莉

李黎, 李宗利, 高丹盈, 等. 高温对钢纤维-聚乙烯醇纤维-CaCO3晶须多尺度纤维/水泥复合材料弯曲性能和微观结构的影响[J]. 复合材料学报, 2021, 38(7): 2326-2335. doi: 10.13801/j.cnki.fhclxb.20200907.001
引用本文: 李黎, 李宗利, 高丹盈, 等. 高温对钢纤维-聚乙烯醇纤维-CaCO3晶须多尺度纤维/水泥复合材料弯曲性能和微观结构的影响[J]. 复合材料学报, 2021, 38(7): 2326-2335. doi: 10.13801/j.cnki.fhclxb.20200907.001
LI Li, LI Zongli, GAO Danying, et al. Influence of high temperature on flexural properties and micro structure of steel fiber-polyvinyl alcohol fiber-CaCO3 whisker multi-scale fibers/cement composite[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2326-2335. doi: 10.13801/j.cnki.fhclxb.20200907.001
Citation: LI Li, LI Zongli, GAO Danying, et al. Influence of high temperature on flexural properties and micro structure of steel fiber-polyvinyl alcohol fiber-CaCO3 whisker multi-scale fibers/cement composite[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2326-2335. doi: 10.13801/j.cnki.fhclxb.20200907.001

高温对钢纤维-聚乙烯醇纤维-CaCO3晶须多尺度纤维/水泥复合材料弯曲性能和微观结构的影响

doi: 10.13801/j.cnki.fhclxb.20200907.001
基金项目: 中央高校基本科研业务费专项资金(Z109022067);国家自然科学基金(51678111)
详细信息
    通讯作者:

    李黎,博士,副教授,研究方向为纤维混凝土 E-mail:drlili@vip.163.com

  • 中图分类号: TB332

Influence of high temperature on flexural properties and micro structure of steel fiber-polyvinyl alcohol fiber-CaCO3 whisker multi-scale fibers/cement composite

  • 摘要: 为促进钢纤维(SF)-聚乙烯醇(PVA)纤维-CaCO3晶须(CW)多尺度纤维/水泥复合材料的工程应用,考察其抗火耐高温性能,本文研究了SF-PVA-CW多尺度纤维/水泥复合材料高温后的弯曲性能及其微观结构。研究发现:随温度升高,SF-PVA-CW多尺度纤维/水泥复合材料弯曲强度总体下降,但在500℃以下时下降缓慢,CW掺量为3vol%的SF-PVA-CW多尺度纤维/水泥复合材料弯曲强度有所提高;800℃及以上时,SF-PVA-CW多尺度纤维/水泥复合材料的弯曲强度急剧下降。采用JSCE SF4规定的等效弯曲强度评价弯曲韧性。随温度升高,SF-PVA-CW多尺度纤维/水泥复合材料的等效弯曲强度逐渐降低,500℃以下时掺加CW显著增强了SF对裂缝的控制能力,其中小挠度阶段的作用效果优于大挠度阶段。800℃以上时,等效弯曲强度急剧下降,其中大挠度阶段下降更为显著。借助数码相机、光学显微镜和SEM进行多尺度观测,揭示了高温对SF-PVA-CW多尺度纤维/水泥复合材料弯曲性能影响的微观机制。

     

  • 图  1  四点弯曲试验方法

    Figure  1.  Test method of four-point flexural test

    图  2  SF-PVA-CW多尺度纤维/水泥复合材料高温后的弯曲强度

    Figure  2.  Flexural strength of SF-PVA-CW multi-scale fibers/cement composites after high temperatures

    图  3  SF-PVA-CW多尺度纤维/水泥复合材料高温后特定挠度处的等效弯曲强度

    Figure  3.  Equivalent flexural strength at specific deflection of SF-PVA-CW multi-scale fibers/cement composites after high temperatures

    L/600=0.2 mm; L/150=0.8 mm; L/100=1.2 mm; L/50=2.4 mm

    图  4  数码相机采集的SF-PVA-CW多尺度纤维/水泥复合材料高温后截面形貌

    Figure  4.  Section morphologies of SF-PVA-CW multi-scale fibers/cement composites after high temperatures acquired by digital camera

    图  5  高温后光学显微镜下SF-PVA-CW多尺度纤维/水泥复合材料的微观结构

    Figure  5.  Microstructures of SF-PVA-CW multi-scale fibers/cement composites under optical microscope after high temperatures

    图  6  高温后SF-PVA-CW多尺度纤维/水泥复合材料的SEM图像

    Figure  6.  SEM images of SF-PVA-CW multi-scale fibers/cement composites after high temperatures

    表  1  原材料的基本性能

    Table  1.   Properties of raw materials

    Raw materialDensity/
    (g·cm−3)
    SizeMechanical propertyOrigin
    Cement 3.20 Specific surface area 356 m2/kg Dalian Onoda Cement Co. Ltd.
    Silica sand 2.65 Fineness modulus 1.9 Media
    sand
    Moh’s hardness 7 Dalian
    SF 7.8 Length 13 mm; Diameter 200 μm Tensile strength ≥2 GPa; Elastic modulus 200–210 GPa Bekaert
    PVA 1.29 Length 6 mm; Diameter 31 μm Tensile strength 1.1 GPa; Elastic modulus 41 GPa Wanwei High-tech Material Co. Ltd., China
    CW 2.86 Length 20–30 μm; Diameter 0.5–2 μm Tensile strength 3–6 GPa; Elastic modulus 410–710 GPa Shanghai Fengzhu Co. Ltd.
    Notes: SF—Steel fiber; PVA—Polyvinyl alcohol fiber; CW—CaCO3 whisker.
    下载: 导出CSV

    表  2  钢纤维(SF)-聚乙烯醇(PVA)纤维-CaCO3晶须(CW)多尺度纤维/水泥复合材料的配比

    Table  2.   Proportions of steel fiber (SF)-polyvinyl alcohol (PVA) fiber-CaCO3 whisker (CW) multi-scale fibers/cement composite

    GroupVolume fraction/vol%Fiber dosage/(kg·m−3)
    SFPVACWSFPVACW
    PC 0 0 0 0 0 0
    CW/C 0 0 1 0 0 28.6
    SF-PVA/C 1.50 0.5 0 117 6.45 0
    SF-PVA-CW/C1 1.50 0.5 1 117 6.45 28.6
    SF-PVA-CW/C2 1.25 0.5 2 117 6.45 57.2
    SF-PVA-CW/C3 1.25 0.5 3 117 6.45 85.8
    下载: 导出CSV
  • [1] 张鹏, WITTMANN F, 赵铁军, 等. 高韧性PVA-SHCC多缝开裂后吸水特性研究[J]. 建筑材料学报, 2011, 14(3):324-328.

    ZHANG Peng, WITTMANN F, ZHAO Tiejun, et al. Water absorption of high toughness PVA-SHCC after multi-cracking[J]. Journal of Building Materials,2011,14(3):324-328(in Chinese).
    [2] ARORA A, YAO Y, MOBASHER B, et al. Fundamental insights into the compressive and flexural response of binder- and aggregate-optimized ultra-high performance concrete (UHPC)[J]. Cement and Concrete Composites,2019,98:1-13. doi: 10.1016/j.cemconcomp.2019.01.015
    [3] ZHANG Y, JU J, ZHU H, et al. A novel multi-scale model for predicting the thermal damage of hybrid fiber-reinforced concrete[J]. International Journal of Damage Mechanics,2020,29(1):19-44. doi: 10.1177/1056789519831554
    [4] YAO W, LI J, WU K. Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction[J]. Cement and Concrete Research,2003,33(1):27-30. doi: 10.1016/S0008-8846(02)00913-4
    [5] 华渊, 连俊英, 周太全. 长径比对混杂纤维增强混凝土力学性能的影响[J]. 建筑材料学报, 2005, 8(1):71-76.

    HUA Yuan, LIAN Junying, ZHOU Taiquan. Relationship between the mechanical properties of hybrid fiber reinforced concrete and length diameter aspect ratio of hybrid fiber[J]. Journal of Building Materials,2005,8(1):71-76(in Chinese).
    [6] LI L, CAO M, XIE C, et al. Effects of CaCO3 whisker, hybrid fiber content and size on uniaxial compressive behavior of cementitious composites[J]. Structural Concrete,2019,20(1):506-518. doi: 10.1002/suco.201800185
    [7] CAO M, XIE C, GUAN J. Fracture behavior of cement mortar reinforced by hybrid composite fiber consisting of CaCO3 whiskers and PVA-steel hybrid fibers[J]. Composites Part A: Applied Science and Manufacturing,2019,120:172-187. doi: 10.1016/j.compositesa.2019.03.002
    [8] 张聪, 曹明莉. 多尺度纤维增强水泥基复合材料力学性能试验[J]. 复合材料学报, 2014, 31(3):661-668.

    ZHANG Cong, CAO Mingli. Mechancial property test of a multi-scale fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica,2014,31(3):661-668(in Chinese).
    [9] 张聪, 余志辉, 韩世诚, 等. 混杂纤维增强应变硬化水泥基复合材料的压缩本构关系[J]. 复合材料学报, 2020, 37(5):1221-1226.

    ZHANG Cong, YU Zhihui, HAN Shicheng, et al. Compression constitutive relation of hybrid fiber reinforced strain hardening cementitious composites[J]. Acta Materiae Compositae Sinica,2020,37(5):1221-1226(in Chinese).
    [10] LI L, CAO M, YIN H. Comparative roles between aragonite and calcite calcium carbonate whiskers in the hydration and strength of cement paste[J]. Cement and Concrete Composites,2019,104:103350. doi: 10.1016/j.cemconcomp.2019.103350
    [11] YANG Y, DENG Y. Mechanical properties of hybrid short fibers reinforced oil well cement by polyester fiber and calcium carbonate whisker[J]. Construction and Building Materials,2018,182:258-272. doi: 10.1016/j.conbuildmat.2018.06.110
    [12] LI M, YANG Y, LIU M, et al. Hybrid effect of calcium carbonate whisker and carbon fiber on the mechanical properties and microstructure of oil well cement[J]. Construction and Building Materials,2015,93:995-1002. doi: 10.1016/j.conbuildmat.2015.05.056
    [13] PAN J, CAI J, MA H, et al. Development of multiscale fiber-reinforced engineered cementitious composites with PVA fiber and CaCO3 whisker[J]. ASCE Journal of Materials in Civil Engineering,2018,30(6):40181066.
    [14] 张翼, 王冲, 张超, 等. 超高韧性水泥基材料的制备技术[J]. 土木建筑与环境工程, 2018, 40(1):83-89.

    ZHANG Yi, WANG Chong, ZHANG Chao, et al. Preparation technology of the ultra-high-toughness cementitious composite[J]. Journal of Civil, Architectural & Environmental Engineering,2018,40(1):83-89(in Chinese).
    [15] 张文华, 张仔祥, 刘鹏宇, 等. 多尺度纤维增强超高性能混凝土的轴心抗拉和抗压行为[J]. 硅酸盐学报, 2020, 48(8):1-13.

    ZHANG Wenhua, ZHANG Zixiang, LIU Pengyu, et al. Uniaxial tensile and compressive stress-strain behavior of multi-scale fiber-reinforced ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society,2020,48(8):1-13(in Chinese).
    [16] YANG Y, ZHOU Q, DENG Y, et al. Reinforcement effects of multi-scale hybrid fiber on flexural and fracture behaviors of ultra-low-weight foamed cement-based composites[J]. Cement and Concrete Composites,2020,108:103509. doi: 10.1016/j.cemconcomp.2019.103509
    [17] KHAN M, CAO M, ALI M. Effect of basalt fibers on mechanical properties of calcium carbonate whisker-steel fiber reinforced concrete[J]. Construction and Building Materials,2018,192:742-753. doi: 10.1016/j.conbuildmat.2018.10.159
    [18] 陈明阳, 侯晓萌, 郑文忠, 等. 混凝土高温爆裂临界温度和防爆裂纤维掺量研究综述与分析[J]. 建筑结构学报, 2017, 38(1):161-170.

    CHEN Mingyang, HOU Xiaomeng, ZHENG Wenzhong, et al. Review and analysis on spalling critical temperature of concrete and fibers dosage to prevent spalling at elevated temperatures[J]. Journal of Building Structures,2017,38(1):161-170(in Chinese).
    [19] 郑文忠, 侯晓萌, 王英. 混凝土及预应力混凝土结构抗火研究现状与展望[J]. 哈尔滨工业大学学报, 2016, 48(12):1-18.

    ZHENG Wenzhong, HOU Xiaomeng, WANG Ying. Progress and prospect of fire resistance of reinforced concrete and prestressed concrete structures[J]. Journal of Harbin Institute of Technology,2016,48(12):1-18(in Chinese).
    [20] 邓明科, 成媛, 翁世强, 等. 高温后高延性混凝土的抗压性能及微观结构[J]. 复合材料学报, 2020, 37(4):985-996.

    DENG Mingke, CHENG Yuan, WENG Shiqiang, et al. Compressive properties and micro-structure analysis of high ductility concrete exposed to elevated temperature[J]. Acta Materiae Compositae Sinica,2020,37(4):985-996(in Chinese).
    [21] 高丹盈, 赵亮平, 陈刚. 高温中纤维纳米混凝土单轴受压应力-应变关系[J]. 土木工程学报, 2017, 50(9):46-58.

    GAO Danying, ZHAO Liangping, CHEN Gang. Compressive stress-strain relationship of fiber and nanosized material reinforced concrete in high temperature[J]. China Civil Engineering Journal,2017,50(9):46-58(in Chinese).
    [22] 高丹盈, 李晗. 高温后纤维纳米混凝土单轴受压应力-应变关系[J]. 土木工程学报, 2015, 48(10):10-20.

    GAO Danying, LI Han. Compressive stress-strain relationship of fiber & nanosized materials reinforced concrete after exposure to high temperature[J]. China Civil Engineering Journal,2015,48(10):10-20(in Chinese).
    [23] 元成方, 高丹盈. 聚丙烯纤维混凝土高温后的孔隙结构特征研究[J]. 华中科技大学学报(自然科学版), 2014, 42(4):122-126.

    YUAN Chengfang, GAO Danying. Performance of polypropylene-steel hybrid fiber reinforced concrete after being exposed to high temperature[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2014,42(4):122-126(in Chinese).
    [24] 高丹盈, 李晗, 杨帆. 聚丙烯-钢纤维增强高强混凝土高温性能[J]. 复合材料学报, 2013, 30(1):187-193.

    GAO Danying, LI Han, YANG Fan. Performance of polypropylene-steel hybrid fiber reinforced concrete after being exposed to high temperature[J]. Acta Materiae Compositae Sinica,2013,30(1):187-193(in Chinese).
    [25] 高丹盈, 杨淑慧, 赵军. 高温后纤维矿渣微粉混凝土抗压强度[J]. 建筑材料学报, 2010, 13(6):711-715.

    GAO Danying, YANG Shuhui, ZHAO Jun. Compressive strength of fiber reinforced concrete with slag powder after high temperature[J]. Journal of Building Materials,2010,13(6):711-715(in Chinese).
    [26] CAO M, LI L, YIN H, et al. Microstructure and strength of calcium carbonate (CaCO3) whisker reinforced cement paste after exposed to high temperatures[J]. Fire Technology,2019,55(6):1983-2003. doi: 10.1007/s10694-019-00839-3
    [27] 朋改非, 牛旭婧, 成铠. 超高性能混凝土的火灾高温性能研究综述[J]. 材料导报, 2017, 31(12):17-23.

    PENG Gaifei, NIU Xujing, CHENG Kai. Research on fire resistance of ultra-high performance concrete: A review[J]. Materials Reports,2017,31(12):17-23(in Chinese).
    [28] 朋改非, 杨娟, 石云兴. 超高性能混凝土高温后残余力学性能试验研究[J]. 土木工程学报, 2017, 50(4):73-79.

    PENG Gaifei, YANG Juan, SHI Yunxing. Experimental study on residual mechanical properties of ultra-high performance concrete exposed to high temperature[J]. China Civil Engineering Journal,2017,50(4):73-79(in Chinese).
    [29] 杨娟, 朋改非. 纤维对超高性能混凝土残余强度及高温爆裂性能的影响[J]. 复合材料学报, 2016, 33(12):2931-2940.

    YANG Juan, PENG Gaifei. Effect of fiber on residual strength and explosive spalling behavior of ultra-high-performance concrete exposed to high temperature[J]. Acta Materiae Compositae Sinica,2016,33(12):2931-2940(in Chinese).
    [30] LI Q, GAO X, XU S, et al. Microstructure and mechanical properties of high-toughness fiber-reinforced cementitious composites after exposure to elevated temperatures[J]. ASCE Journal of Materials in Civil Engineering,2016,28(11):401613211.
    [31] SANCHAYAN S, FOSTER S J. High temperature behaviour of hybrid steel-PVA fibre reinforced reactive powder concrete[J]. Materials and Structures,2016,49(3):769-782. doi: 10.1617/s11527-015-0537-2
    [32] 王立闻, 庞宝君, 盖秉政, 等. 活性粉末混凝土高温后冲击压缩特性研究[J]. 工程力学, 2012, 29(9):245-251.

    WANG Liwen, PANG Baojun, GAI Bingzheng, et al. Investigation of dynamic compression properties of reactive powder concrete after exposure in high temperature[J]. Engineering Mechanics,2012,29(9):245-251(in Chinese).
    [33] 张聪, 夏超凡, 袁振, 等. 高温作用对混杂纤维增强高延性水泥基复合材料拉伸性能的影响[J]. 功能材料, 2020, 51(2):2007-2013.

    ZHANG Cong, XIA Chaofan, YUAN Zhen, et al. Effect of high temperature on the tensile properties of hybrid fiber reinforced high ductility cementitious composites[J]. Journal of Functional Materials,2020,51(2):2007-2013(in Chinese).
    [34] 李黎, 曹明莉. 混杂纤维增强水泥基复合材料弯曲韧性与纤维增强指数的定量关系[J]. 复合材料学报, 2018, 35(5):30-34.

    LI Li, CAO Mingli. Research progress on fiber hybrid effect in fiber reinforced cementitious composite[J]. Acta Materiae Compositae Sinica,2018,35(5):30-34(in Chinese).
    [35] 李黎, 曹明莉. 纤维增强水泥基复合材料的纤维混杂效应研究进展[J]. 应用基础与工程科学学报, 2018, 26(4):843-853.

    LI Li, CAO Mingli. Research progress on fiber hybrid effect in fiber reinforced cementitious composite[J]. Journal of Basic Science and Engineering,2018,26(4):843-853(in Chinese).
    [36] 曹明莉, 李黎, 李志文, 等. CaCO3晶须对钢-聚乙烯醇混杂纤维增强水泥基复合材料板弯曲性能的影响[J]. 复合材料学报, 2017, 34(11):2614-2623.

    CAO Mingli, LI Li, LI Zhiwen, et al. Influence of CaCO3 whisker on flexural behavior of steel-polyvinyl alcohol hybrid fiber reinforced cement matrix composite slabs[J]. Acta Materiae Compositae Sinica,2017,34(11):2614-2623(in Chinese).
    [37] Japan Society of Civil Engineers. Method of test for flexural strength and flexural toughness of steel fiber reinforced concrete: JSCE SF4[S]. Japan Society of Civil Engineers, 1984.
    [38] HUANG H, WANG R, GAO X. Improvement effect of fiber alignment on resistance to elevated temperature of ultra-high performance concrete[J]. Composites Part B: Engineering,2019,177:107454. doi: 10.1016/j.compositesb.2019.107454
    [39] LI L, CAO M, MING X, et al. Microstructure of calcium carbonate whisker reinforced cement paste after elevated temperature exposure[J]. Construction and Building Materials,2019,227:116609. doi: 10.1016/j.conbuildmat.2019.07.335
    [40] CAO M, ZHANG C, LI Y, et al. Using calcium carbonate whisker in hybrid fiber-reinforced cementitious composites[J]. ASCE Journal of Materials in Civil Engineering,2015,27(4):4014139. doi: 10.1061/(ASCE)MT.1943-5533.0001041
    [41] CAO M, ZHANG C, LV H, et al. Characterization of mechanical behavior and mechanism of calcium carbonate whisker-reinforced cement mortar[J]. Construction and Building Materials,2014,66:89-97. doi: 10.1016/j.conbuildmat.2014.05.059
    [42] 王建超, 项爱民, 刘小建. 聚乙烯醇的热氧老化与稳定性研究[J]. 中国塑料, 2008, 22(9):74-77.

    WANG Jianchao, XIANG Aimin, LIU Xiaojian. Research on thermal oxidative aging and stability of polyvinyl alcohol[J]. China Plastics,2008,22(9):74-77(in Chinese).
    [43] CAO M, MING X, YIN H, et al. Influence of high temperature on strength, ultrasonic velocity and mass loss of calcium carbonate whisker reinforced cement paste[J]. Composites Part B: Engineering,2019,163:438-446. doi: 10.1016/j.compositesb.2019.01.030
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  854
  • HTML全文浏览量:  378
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-03
  • 录用日期:  2020-09-03
  • 网络出版日期:  2020-09-08
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回