留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨镀Sn调控对石墨/Cu复合材料组织及力学性能的影响

王怡然 高义民 李烨飞 赵四勇 李梦婷

王怡然, 高义民, 李烨飞, 等. 石墨镀Sn调控对石墨/Cu复合材料组织及力学性能的影响[J]. 复合材料学报, 2021, 38(5): 1497-1506. doi: 10.13801/j.cnki.fhclxb.20200902.003
引用本文: 王怡然, 高义民, 李烨飞, 等. 石墨镀Sn调控对石墨/Cu复合材料组织及力学性能的影响[J]. 复合材料学报, 2021, 38(5): 1497-1506. doi: 10.13801/j.cnki.fhclxb.20200902.003
WANG Yiran, GAO Yimin, LI Yefei, et al. Effect of Sn modification on microstructure and mechanical properties of graphite/Cu composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1497-1506. doi: 10.13801/j.cnki.fhclxb.20200902.003
Citation: WANG Yiran, GAO Yimin, LI Yefei, et al. Effect of Sn modification on microstructure and mechanical properties of graphite/Cu composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1497-1506. doi: 10.13801/j.cnki.fhclxb.20200902.003

石墨镀Sn调控对石墨/Cu复合材料组织及力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20200902.003
基金项目: 广西创新驱动发展专项资金项目(桂科AA18242001)
详细信息
    通讯作者:

    王怡然,博士,讲师,研究方向为多尺度金属基复合材料的制备与结构功能一体化 E-mail:wangyiran@xjtu.edu.cn

  • 中图分类号: TB331

Effect of Sn modification on microstructure and mechanical properties of graphite/Cu composites

  • 摘要: 石墨/Cu自润滑复合材料具有良好的摩擦学性能和耐腐蚀性能,在高速铁路领域具有广阔的应用前景。传统石墨/Cu自润滑复合材料中由于石墨与基体不润湿,复合材料界面结合强度低,在材料承受载荷时容易造成石墨相的剥离、脱落,导致复合材料在高载荷服役条件下性能较差。采用化学镀覆工艺在石墨表面镀覆软金属Sn元素调控石墨/Cu复合材料界面,既能够改善复合材料材料组织,又改善了复合材料的力学性能,使复合材料满足服役条件。结果表明:通过石墨镀Sn调控技术,Sn调控石墨/Cu复合材料的组织并无新相生成,复合材料界面处发生强烈的原子互扩散,界面由机械结合变成扩散结合。Sn调控石墨/Cu复合材料的力学性能有显著提高,其中硬度平均提高了80.43%,抗弯强度平均提高了246.74%;当石墨含量为6wt%时,Sn调控石墨/Cu复合材料的硬度提高至(83.61±4.33) HV,抗弯强度提高至(410.41±20.52) MPa,适应并满足复合材料在未来愈加严酷工况环境下的服役需求。

     

  • 图  1  弯曲强度测试方法示意图

    Figure  1.  Schematic of bending strength test

    L—Length of span; d—Width; h—Height

    图  2  镀Sn石墨的SEM和TEM图像

    Figure  2.  SEM and TEM images of Sn coated graphite

    图  3  镀Sn石墨镀层界面微观结构

    Figure  3.  Interfacial microstructure of Sn coated graphite

    图  4  Sn调控石墨/Cu复合材料的SEM图像

    Figure  4.  SEM images of Sn coated graphite/Cu composites

    图  5  Sn调控石墨/Cu复合材料EDS面扫描结果

    Figure  5.  EDS mapping results of Sn coated graphite/Cu composites

    图  6  Sn调控石墨含量为6wt%的Sn调控石墨/Cu复合材料的XRD图谱及界面的EDS线扫描结果

    Figure  6.  XRD pattern and interface EDS line results of Sn coated graphite/Cu composite with 6wt% content of Sn coated graphite

    图  7  Sn调控石墨含量为6wt%的Sn调控石墨/Cu复合材料界面的TEM图像

    Figure  7.  TEM images of interface of Sn coated graphite/Cu composite with 6wt% content of Sn coated graphite

    图  8  Sn调控石墨/Cu复合材料的力学性能

    Figure  8.  Mechanical properties of Sn coated graphite/Cu composites

    图  9  Sn调控石墨含量为6wt%的Sn调控石墨/Cu复合材料断口的SEM图像

    Figure  9.  SEM images of fracture of Sn coated graphite/Cu composite with 6wt% content of Sn coated graphite

    表  1  镀Sn石墨的化学镀液成分

    Table  1.   Composition of chemical plating solution of Sn coated graphite

    SnCl2/(g·L−1)HCl/(mL·L−1)Thiourea/(g·L−1)PEG-6000/(g·L−1)Hydroquinone/(g·L−1)NaH2PO2/(g·L−1)
    Content30.045.0100.02.03.580.0
    Note: PEG-6000—Polyethylene glycol-6000.
    下载: 导出CSV

    表  2  Sn调控石墨/Cu复合材料样品编号及成分

    Table  2.   Sample number and chemical composition of Sn coated graphite/Cu composites

    No.Sn coated
    graphite/wt%
    Ni/
    wt%
    Cu/
    wt%
    Sn coated graphite/Cu-1 1 8 Balance
    Sn coated graphite/Cu-2 2
    Sn coated graphite/Cu-3 3
    Sn coated graphite/Cu-4 4
    Sn coated graphite/Cu-5 5
    Sn coated graphite/Cu-6 6
    下载: 导出CSV

    表  3  镀Sn石墨表面EDS点扫描结果

    Table  3.   EDS point results of Sn coated graphite

    PointC elementSn elementO element
    Mass fraction/wt%Atom fraction/at%Mass fraction/wt%Atom fraction/at%Mass fraction/wt%Atom fraction/at%
    1 13.8 37.7 64.4 17.8 21.8 44.5
    2 13.8 38.7 65.8 42.8 20.4 18.5
    3 14.2 55.5 81.7 32.3 4.1 12.2
    4 12.8 40.6 72.1 36.2 15.1 23.3
    下载: 导出CSV

    表  4  6wt%石墨含量的镀Cu、Ni、Ti、Ag、Sn调控石墨/Cu复合材料力学性能对比

    Table  4.   Comparison of mechanical properties of Cu, Ni, Ti, Ag, Sn modified graphite/Cu composites with 6wt% content of graphite

    SampleHardness (HV)Flexural strength/MPa
    Unmodified 38.93 95.27
    Cu modified 41.85 125.42
    Ni modified 45.25 137.14
    Ti modified 50.23 190.54
    Ag modified 59.25 275.19
    Sn modified 83.61 410.41
    下载: 导出CSV
  • [1] 沈巍, 崔冬芳, 史玉杰. 自润滑道岔滑床板的研制[J]. 中国铁道科学, 1998, 19(4):103-110.

    SHEN Wei, CUI Dongfang, SHI Yujie. Re-search and manufacture of self-lubricating switch glide[J]. China Railway Science,1998,19(4):103-110(in Chinese).
    [2] DONG S K, WAN Y C. An accident causation model for the railway industry: Application of the model to 80 rail accident investigation reports from the UK[J]. Safety Science,2013,60:57-68. doi: 10.1016/j.ssci.2013.06.010
    [3] MOUSTAFA S F, EL-BADRY S A, SANAD A M, et al. Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders[J]. Wear,2002,253(7-8):699-710. doi: 10.1016/S0043-1648(02)00038-8
    [4] HE D H, MANORY R. A novel electrical contact material with improved self-lubrication for railway current collectors[J]. Wear,2001,249(7):626-636. doi: 10.1016/S0043-1648(01)00700-1
    [5] PRABHU T R, VARMA V K, VEDANTAM S. Tribological and mechanical behavior of multilayer Cu/SiC+Gr hybrid composites for brake friction material applications[J]. Wear,2014,317(1-2):201-212. doi: 10.1016/j.wear.2014.06.006
    [6] WANG Y R, GAO Y M, SUN L, et al. Effect of physical properties of Cu-Ni-graphite composites on tribological characteristics by grey cor-relation analysis[J]. Results in Physics,2017,7:263-271. doi: 10.1016/j.rinp.2016.12.041
    [7] WANG Y R, GAO Y M, LI Y F, et al. The study on graphite coated with titanium by multi-arc ion plating[C]//International Union of Materials Research Societies: The 15th International Conference on Advanced Materials. Kyoto: 2017.
    [8] WANG Y R, GAO Y M, LI Y F. Effect of milling time on microstructure and mechanical properties of Cu-Ni-graphite composites[J]. Materials Research Express,2017,4(9):096506. doi: 10.1088/2053-1591/aa84a7
    [9] WANG Y R, GAO Y M, LI Y F, et al. Research on nickel modified graphite/Cu composites interface[J]. Surface & Coatings Technology,2017,328:70-79.
    [10] 王怡然, 高义民, 李梦婷, 等. Sn改性对道岔滑床板用铜基石墨复合材料摩擦磨损性能影响研究[C]//第十五届全国耐磨材料大会. 合肥: 2018.

    WANG Yiran, GAO Yimin, LI Mengting, et al. Effect of stannum on tribological properties of Cu-Ni-graphite composites used as switch slide baseplate[C]//15th China Wear Resistance Materials Conference. Hefei: 2018(in Chinese).
    [11] WANG Y R, GAO Y M, TAKAHASHI J, et al. The study of microstructure characterization Cu modified Cu-Ni-graphite composite[J]. Composite Interfaces,2020,27(3):249-262.
    [12] WANG Y R, GAO Y M, TAKAHASHI J, et al. Effect of graphite content on Cu-Ni-graphite composite for use as switch slide baseplate materials sliding against U75V steel[J]. Journal of Tribology,2019,141(12):121603. doi: 10.1080/09276440.2019.1621598
    [13] WANG Y R, GAO Y M, TAKAHASHI J, et al. Effect of plating time on surface evolution of chromium modified graphite powder by multi-arc ion plating[J]. Surface Topography-Metrology and Properties,2019,7(3):015009.
    [14] WANG Y R, GAO Y M, LI Y F. Titanium modified interface of Cu-Ni-graphite composites used as switch slide baseplates[C]//The 3rd China International Congress on Composite Materials. Hangzhou: 2017.
    [15] WANG Y R, GAO Y M, TAKAHASHI J, et al. Titanium-modified graphite reinforced Cu-Ni composite by multi-arc ion plating technology[J]. Vacuum,2019,168:108829. doi: 10.1016/j.vacuum.2019.108829
    [16] WANG Y R, GAO Y M, TAKAHASHI J, et al. Investigation of modification of Cu-Ni-graphite composite by silver[J]. Materials Chemistry and Physics,2019,239:121990.
    [17] WANG Y R, GAO Y M, LI Y F, et al. Research on synergistic lubrication effect of silver modified Cu-Ni-graphite composite[J]. Wear,2020,444-445:203140. doi: 10.1016/j.wear.2019.203140
    [18] WANG Y R, GAO Y M, LI Y F, et al. Review on preparation and application of copper-steel bimetal composites[J]. Emerging Materials Research,2019,8(4):538-551. doi: 10.1680/jemmr.17.00008
    [19] 伍勇. 碱金属在石墨表面化学吸附的EHT研究[J]. 复旦学报(自然科学版), 2000, 39(2):167-173.

    WU Yong. EHT Study on chemical adsorption of alkali metals on graphite surface[J]. Journal of Fudan University (Natural Science),2000,39(2):167-173(in Chinese).
    [20] 杨余芳, 衷明华, 黄俊生. 化学镀锡反应动力学特性研究[J]. 表面技术, 2014, 43(6):64-68.

    YANG Yufang, ZHONG Minghua, HUANG Junsheng. Dynamic characteristics of electroless tin plating reaction[J]. Surface Technology,2014,43(6):64-68(in Chinese).
    [21] 贾德昌, 宋桂明. 无机非金属材料性能[M]. 北京: 科学出版社, 2008.

    JIA Dechang, SONG Guiming. Properties of inorganic nonmetallic material[M]. Beijing: Science Press, 2008(in Chinese).
    [22] 中国国家标准化管理委员会. 精细陶瓷弯曲强度试验方法: GB/T 6569—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Fine ceramics (advanced ceramics,advanced technical ceramics): Test method for for flexural strength of monolithic ceramics at room temperature: GB/T 6569—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [23] PREDEL B. Phase equilibria, crystallographic and thermodynamic data of binary alloys[M]. Berlin: Springer, 2013.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  945
  • HTML全文浏览量:  564
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 录用日期:  2020-08-18
  • 网络出版日期:  2020-09-03
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回