留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯及其衍生物掺配水泥基材料研究进展

程志海 杨森 袁小亚

程志海, 杨森, 袁小亚. 石墨烯及其衍生物掺配水泥基材料研究进展[J]. 复合材料学报, 2021, 38(2): 339-360. doi: 10.13801/j.cnki.fhclxb.20200902.001
引用本文: 程志海, 杨森, 袁小亚. 石墨烯及其衍生物掺配水泥基材料研究进展[J]. 复合材料学报, 2021, 38(2): 339-360. doi: 10.13801/j.cnki.fhclxb.20200902.001
CHENG Zhihai, YANG Sen, YUAN Xiaoya. Research progress of cement-based materials blended with graphene and its derivatives[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 339-360. doi: 10.13801/j.cnki.fhclxb.20200902.001
Citation: CHENG Zhihai, YANG Sen, YUAN Xiaoya. Research progress of cement-based materials blended with graphene and its derivatives[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 339-360. doi: 10.13801/j.cnki.fhclxb.20200902.001

石墨烯及其衍生物掺配水泥基材料研究进展

doi: 10.13801/j.cnki.fhclxb.20200902.001
基金项目: 国家自然科学基金(NO.51402030);重庆市基础科学与前沿技术研究专项基金(cstc2017jcyjBX0028);重庆市教育委员会科学技术研究项目(KJZD-K201800703)
详细信息
    通讯作者:

    袁小亚,博士,教授,硕士生导师,研究方向为纳米复合材料、建筑功能材料、高性能水泥混凝土等领域  E-mail:yuanxy@cqjtu.cn

  • 中图分类号: TU528.04

Research progress of cement-based materials blended with graphene and its derivatives

  • 摘要: 石墨烯及其衍生物因其独特的结构及优异的性能在改善基水泥材料的抗拉强度、韧性、耐久性及赋予水泥基材料功能性等方面表现出良好的应用前景。本文简述了石墨烯、氧化石墨烯(GO)的结构特点及性能,归纳了各自的制备方法;对石墨烯及其衍生物在水泥基材料中的分散进行了综述;重点综述了石墨烯及其衍生物掺配水泥基材料的力学性能、流变性能、电学性能、热学性能、压敏性能等研究进展;分析了目前研究中存在的问题,并对研究趋势进行展望。

     

  • 图  1  石墨烯结构示意图[13]

    Figure  1.  Schematic diagram of graphene structure[13]

    图  2  聚羧酸高性能减水剂(PC)-氧化石墨烯(GO)分散机制[55]

    Figure  2.  Dispersion mechanism of polycarboxylates high performance water-reducing admixture (PC)-graphene oxide (GO)[55]

    图  3  GO调控水泥水化的机制模型[70]

    Figure  3.  Mechanism model of cement hydration regulated by GO[70]

    图  4  掺0.03wt%GO水泥基材料28天的SEM图像[71]

    Figure  4.  SEM image of cement composites doping with 0.03wt% GO at 28 days[71]

  • [1] 王景贤, 王立久. 纳米材料在混凝土中的应用研究进展[J]. 混凝土, 2004, 11:18-21. doi: 10.3969/j.issn.1002-3550.2004.09.006

    WANG Jingxian, WANG Lijiu. Advances in the applied research of nano-material in concrete[J]. Concrete,2004,11:18-21(in Chinese). doi: 10.3969/j.issn.1002-3550.2004.09.006
    [2] CHUAH S, PAN Z, SANJAYAN J G, et al. Nano reinforced cement and concrete composites and new perspective from graphene oxide[J]. Construction and Building Materials,2014,73:113-124. doi: 10.1016/j.conbuildmat.2014.09.040
    [3] 苗生龙, 周样梅, 陈奎宇, 等. 纳米材料对混凝土性能影响研究进展[J]. 混凝土与水泥制品, 2019, 4:20-23.

    MIAO Shenglong, ZHOU Yangmei, CHEN Kuiyu, et al. Research progress on the influence of nano materials on the performance of concrete[J]. China Concrete and Cement Products,2019,4:20-23(in Chinese).
    [4] PAUL S C, VAN ROOYEN A S, VAN ZIJL G P A G, et al. Properties of cement-based composites using nano-particles: A comprehensive review[J]. Construction and Building Materials,2018,189:1019-1034. doi: 10.1016/j.conbuildmat.2018.09.062
    [5] SANCHEZ F, SOBOLEY K. Nanotechnology in concrete-A review[J]. Construction and Building Materials,2010,24(11):2060-2071. doi: 10.1016/j.conbuildmat.2010.03.014
    [6] 姜瑞双. 石墨烯水性分散及其水泥基复合材料力学性能[D]. 大连: 大连理工大学, 2017.

    JIANG Ruishuang. Graphene aqueous dispersion and mechanical properties of cement-based compsite[D]. Dalian: Dalian University of Technology, 2017(in Chinese).
    [7] 韩古月, 聂立武. 纳米材料在混凝土中的应用研究现状[J]. 混凝土, 2018(7):65-68. doi: 10.3969/j.issn.1002-3550.2018.07.017

    HAN Guyue, NIE Liwu. Research progress of nanomaterials application in concrete[J]. Concrete,2018(7):65-68(in Chinese). doi: 10.3969/j.issn.1002-3550.2018.07.017
    [8] 王宝民, 姜瑞双, 赵汝英. 石墨烯的分散性及石墨烯水泥基复合材料的研究进展[J]. 混凝土, 2016(12):68-72. doi: 10.3969/j.issn.1002-3550.2016.12.018

    WANG Baomin, JIANG Ruishuang, ZHAO Ruying. Research progress of the dispersibility of graphene and graphene cement-based composite materials[J]. Concrete,2016(12):68-72(in Chinese). doi: 10.3969/j.issn.1002-3550.2016.12.018
    [9] ZHENG Q F, HAN B G, CUI X, et al. Graphene engineered cementitious composites: Small makes a big impact[J]. Nanomaterials and Nanotechnology,2017,7:1-18.
    [10] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [11] 金燕, 杨倩, 赵文斌, 等. 石墨烯化学气相沉积法可控制备的催化反应体系研究[J]. 化工学报, 2020, 71(6): 116-137.

    JIN Yan, YANG Qian, ZHAO Wenbin, et al. Catalytic reaction system for controllable synthesis of graphene with chemical vapor deposition [J]. Ciesc Journal, 2020, 2020, 71(6): 116-137(in Chinese).
    [12] 袁小亚. 石墨烯的制备研究进展[J]. 无机材料学报, 2011, 26(6):561-570. doi: 10.3724/SP.J.1077.2011.00561

    YUAN Xiaoya. Progress in preparation of graphene[J]. Journal of Inorganic Materials,2011,26(6):561-570(in Chinese). doi: 10.3724/SP.J.1077.2011.00561
    [13] 朱杰君, 孙海斌, 吴耀政, 等. 石墨烯的制备, 表征及其在透明导电膜中的应用[J]. 物理化学学报, 2016, 32(10):2399-2410. doi: 10.3866/PKU.WHXB201606242

    ZHU Jiejun, SUN Haibin, WU Yaozheng, et al. Graphene: Synthesis, characterization and application in transparent conductive films[J]. Journal of Physical Chemistry,2016,32(10):2399-2410(in Chinese). doi: 10.3866/PKU.WHXB201606242
    [14] NOVOSELOV K S, GEIM A K. The rise of graphene[J]. Nature Materials,2007,6(3):183-191. doi: 10.1038/nmat1849
    [15] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [16] 胡成龙, 高波, 周英伟. 石墨烯制备方法研究进展[J]. 功能材料, 2018, 49(9):9001-9006.

    HU Chenglong, GAO Bo, ZHOU Yingwei. Research progress of graphene preparation method[J]. Functional Materials,2018,49(9):9001-9006(in Chinese).
    [17] MAYOROV A S, GORBACHEV R V, MOROZOV S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Letters,2011,11(6):2396-2399. doi: 10.1021/nl200758b
    [18] 杨一凡, 何智海, 詹培敏. 石墨烯及其衍生物在水泥基材料中的应用与研究进展[J]. 硅酸盐通报, 2020, 39(3):669-676.

    YANG Yifan, HE Zhihai, ZHAN Peimin. Application and research progress of graphene and its ramifications in cementitious materials[J]. Bulletin of The Chinese Ceramic Society,2020,39(3):669-676(in Chinese).
    [19] BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907. doi: 10.1021/nl0731872
    [20] CAO Y, FATEMI V, FANG S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature,2018,556(7699):43-50. doi: 10.1038/nature26160
    [21] CAO Y, FATEMI V, DEMIR A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature,2018,556(7699):80-84. doi: 10.1038/nature26154
    [22] 徐驰, 朱和国. 石墨烯的制备及其在能源方面的应用研究进展[J]. 材料科学与工程学报, 2016, 34(2):326-332.

    XU Chi, ZHU Heguo. Progress in fabrication and application of graphene[J]. Journal of Materials Science and Engineering,2016,34(2):326-332(in Chinese).
    [23] CHUAH S, LI W, CHEN S J, et al. Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments[J]. Construction and Building Materials,2018,161:519-527. doi: 10.1016/j.conbuildmat.2017.11.154
    [24] 何大方, 吴健, 刘战剑, 等. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8):2888-2894.

    HE Dafang, WU Jian, LIU Zhanjian, et al. Recent advances in pre-paration of graphene for applications[J]. Ciesc Journal,2015,66(8):2888-2894(in Chinese).
    [25] 平蕴杰, 龚佑宁, 潘春旭. 电化学剥离制备石墨烯及其光电特性研究进展[J]. 中国激光, 2017, 44(7):104-119.

    PING Yunjie, GONG yunning, PAN Chunxu. Research progress in preparation of graphene from electrochemical exfolication and its optoelectronic characteristic[J]. Chinese Journal of Lasers,2017,44(7):104-119(in Chinese).
    [26] 于琦, 梁锦霞. 石墨烯制备与功能化应用的研究进展[J]. 中国科学: 化学, 2017, 47(10):1149-1160. doi: 10.1360/N032017-00078

    YU Qi, LIANG Jinxia. Progress in preparation and functionalization of graphene[J]. Scientia Sinica (Chimica),2017,47(10):1149-1160(in Chinese). doi: 10.1360/N032017-00078
    [27] 肖勇, 马卫东, 孙志勇, 等. 石墨烯制备与应用研究进展[J]. 功能材料与器件学报, 2017, 23(5):125-131.

    XIAO Yong, MA Weidong, SUN Zhiyong, et al. Research progress of graphene preparation and application[J]. Journal of Functional Materials and Devices,2017,23(5):125-131(in Chinese).
    [28] 石晓东, 王伟, 尹强, 等. 化学气相沉积制备大面积高质量石墨烯的研究进展[J]. 材料导报, 2017, 31(3):136-142.

    SHI Xiaodong, WANG Wei, YIN Qiang, et al. Research progress of large-area and high-quality graphene prepared by chemical vapor deposition[J]. Materials Guide,2017,31(3):136-142(in Chinese).
    [29] 杜淼, 张光荣. 石墨烯的制备及其应用研究进展[J]. 无机盐工业, 2019, 51(3):12-15.

    DU Miao, ZHANG Guangrong. Progress in preparation and application of graphene[J]. Inorganic Chemicals Industry,2019,51(3):12-15(in Chinese).
    [30] 赵浩然, 吕生华. 氧化石墨烯及其聚合物复合材料制备的研究进展[J]. 高分子材料科学与工程, 2016, 32(3):184-190.

    ZHAO Haoran, LV Shenghua. Research progress in preparation of graphene oxide and its polymer composites[J]. Polymer Materials Science and Engineering,2016,32(3):184-190(in Chinese).
    [31] 黄满华, 唐志红, 杨俊和. 氧化石墨烯结构的研究进展[J]. 新型炭材料, 2019, 34(4):307-314.

    HUANG Manhua, TANG Zhihong, YANG Junhe. Research progress on the structure of graphene oxide[J]. New Carbon Materials,2019,34(4):307-314(in Chinese).
    [32] 张倩, 唐利斌, 李汝劼, 等. 氧化石墨烯的制备还原及应用进展[J]. 红外与毫米波学报, 2019, 38(1):79-90.

    ZHANG Qian, TANG Libin, LI Rujie, et al. Graphene oxide: Pogress in preparation, reduction and application[J]. Journal of Infrared and Millimeter Waves,2019,38(1):79-90(in Chinese).
    [33] 侯永刚, 吕生华, 罗潇倩, 等. 氧化石墨烯的制备及形成机理[J]. 精细化工, 2019, 36(4):559-567.

    HOU Yonggang, LV Shenghua, LUO Xiaoqian, et al. Preparation and formation mechanism of graphene oxide[J]. Fine Chemicals,2019,36(4):559-567(in Chinese).
    [34] 蔡钰. 石墨烯增强相变储能水泥基材料的制备及其性能研究[D]. 杭州: 浙江工业大学, 2019.

    CAI Yu. Preparation and properties of graphene reinforced phase change energy storage cement-based materials[D]. Hangzhou: Zhejiang University of Technology, 2019(in Chinese).
    [35] 赵市超. 石墨烯在水溶液中分散性改善研究[D]. 成都: 电子科技大学, 2019.

    ZHAO Shichao. Dispersion improvement of graphene in aqueous solution[D]. Chengdu: University of Electronic Science and Technology, 2019(in Chinese).
    [36] 张斌, 陈体军, 王凌云, 等. 石墨烯纳米片超声分散的研究[J]. 功能材料, 2019, 50(8):8133-8139. doi: 10.3969/j.issn.1001-9731.2019.08.019

    ZHANG Bin, CHEN Tijun, WANG Lingyun, et al. Study on ultrasonic dispersion of graphene nano sheets[J]. Functional Materials,2019,50(8):8133-8139(in Chinese). doi: 10.3969/j.issn.1001-9731.2019.08.019
    [37] NAZARI B, RANJBAR Z, MOGHADDAM A R, et al. Dispersing graphene in aqueous media: Investigating the effect of different surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,582:123870. doi: 10.1016/j.colsurfa.2019.123870
    [38] 徐凯丽. 石墨烯—水泥基复合材料的制备及其功能性研究[D]. 南京: 东南大学, 2018.

    XU Kaili. Preparation and functional study of graphene cement composite[D]. Nanjing: Southeast University, 2018(in Chinese).
    [39] 赵汝英. 石墨烯的分散性及其水泥基复合材料的耐久性[D]. 大连: 大连理工大学, 2018.

    ZHAO Ruying. Dispersion of graphene and durability of cement-based composite[D]. Dalian: Dalian University of Technology, 2018(in Chinese).
    [40] 杨凌俊, 袁小亚. 氧化石墨烯复掺石墨烯对水泥砂浆力学性能的提升及机理研究[J]. 功能材料, 2019, 50(12):12089-12096.

    YANG Lingjun, YUAN Xiaoya. Graphene oxide mixed with graphene improves the mechanical properties of cement mortar and its mechanism[J]. Functional Materials,2019,50(12):12089-12096(in Chinese).
    [41] 袁小亚, 彭一豪, 孙立涛, 等. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6):6075-6080.

    YUAN Xiaoya, PENG Yihao, SUN Litao, et al. Dispersion of thermal reduced graphene oxide in cement hydration medium and study on its performance and mechanism of mortar reinforcement[J]. Material Guide,2020,34(6):6075-6080(in Chinese).
    [42] KORAYEM A H, TOURANI N, ZAKERTABRIZI M, et al. A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective[J]. Construction and Building Materials,2017,153:346-357. doi: 10.1016/j.conbuildmat.2017.06.164
    [43] LI X Y, KORAYEM A H, LI C, et al. Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength[J]. Construction and Building Materials,2016,123:327-335. doi: 10.1016/j.conbuildmat.2016.07.022
    [44] LU L L, OUYANG D. Properties of cement mortar and ultra-high strength concrete incorporating graphene oxide nanosheets[J]. Nanomaterials,2017,7(7):187. doi: 10.3390/nano7070187
    [45] GONG K, PAN Z, KORAYEM A H, et al. Reinforcing effects of graphene oxide on portland cement paste[J]. Journal of Materials in Civil Engineering,2015,27(2):A4014010.
    [46] WANG B M, JIANG R, WU Z. Investigation of the mechanical properties and microstructure of graphene nanoplatelet-cement composite[J]. Nanomaterials,2016,6(11):200. doi: 10.3390/nano6110200
    [47] KANG D, SEO K S, LEE H Y, et al. Experimental study on mechanical strength of GO-cement composites[J]. Construction and Building Materials,2017,131:303-308. doi: 10.1016/j.conbuildmat.2016.11.083
    [48] MA P C, SIDDIQUI N A, MAROM G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Composites Part A: Applied Science Manufacturing, 2010, 41(10): 1345-1367.
    [49] SHARMA S, KOTHIYAL N C. Comparative effects of pristine and ball-milled graphene oxide on physico-chemical characteristics of cement mortar nanocompo-sites[J]. Construction and Building Materials,2016,115:256-268. doi: 10.1016/j.conbuildmat.2016.04.019
    [50] 张则瑞, 吴建东, 王立国, 等. 氧化石墨烯(GO)在水泥基复合材料中的应用研究进展[J]. 硅酸盐通报, 2017, 36(9):3008-3012.

    ZHANG Zerui, WU Jiandong, WANG Liguo, et al. Research progress on application of graphene oxide in cement matrix composites[J]. Bulletin of The Chinese Ceramic Society,2017,36(9):3008-3012(in Chinese).
    [51] 朱琳琳. 氧化石墨烯的可控分散性及其对水泥基复合材料结构与性能的影响[D]. 西安: 陕西科技大学, 2018.

    ZHU Linlin. Controllable dispersion of graphene oxide and its influence on the structure and properties of cement-based composite[D]. Xi’an: Shaanxi University of Science and Technology, 2018(in Chinese).
    [52] 景国建, 叶正茂, 李成, 等. 球磨法−一种制备氧化石墨烯改性水泥基材料的可替代性分散方法(英文)[J]. 新型炭材料, 2019, 34(6):569-577. doi: 10.1016/S1872-5805(19)60032-6

    JING Guojian, YE Zhengmao, LI Cheng, et al. A ball milling strategy to disperse graphene oxide in cement composites(English)[J]. New Carbon Materials,2019,34(6):569-577(in Chinese). doi: 10.1016/S1872-5805(19)60032-6
    [53] LI X Y, LIU Y M, LI W G, et al. Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste[J]. Construction and Building Materials,2017,145:402-410. doi: 10.1016/j.conbuildmat.2017.04.058
    [54] 袁小亚, 曾俊杰, 牛佳伟, 等. 不同减水剂对氧化石墨烯掺配水泥胶砂力学性能及微观结构的影响[J]. 功能材料, 2018, 49(10):10184-10189.

    YUAN Xiaoya, ZENG Junjie, NIU Jiawei, et al. Effect of different water reducing agents on mechanical properties and microstructure of cement mortar mixed with graphene oxide[J]. Functional Materials,2018,49(10):10184-10189(in Chinese).
    [55] 罗素蓉, 李欣, 林伟毅, 等. 氧化石墨烯分散方式对水泥基材料性能的影响[J]. 硅酸盐通报, 2020, 39(3):677-684.

    LUO Surong, LI Xin, LIN Weiyi, et al. Effect of graphene oxide dispersion method on properties of cement-based materials[J]. Bulletin of The Chinese Ceramic Society,2020,39(3):677-684(in Chinese).
    [56] LONG W J, FANG C, WEI J, et al. Stability of GO modified by different dispersants in cement paste and its related mechanism[J]. Materials,2018,11(5):834-850. doi: 10.3390/ma11050834
    [57] ZHAO L, GUO X L, LIU Y Y, et al. Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution[J]. Carbon,2018,127:255-269. doi: 10.1016/j.carbon.2017.11.016
    [58] 吕生华, 李莹, 赵浩然, 等. 氧化石墨烯在水泥基体中的分散性及对其结构和性能的影响[J]. 精细化工, 2016, 33(5):589-595.

    LV Shenghua, LI Ying, ZHAO Haoran, et al. Dispersity of graphene oxide in cement matrix and impact on its structure and properties[J]. Fine Chemicals,2016,33(5):589-595(in Chinese).
    [59] 张佳. 氧化石墨烯对水泥基复合材料结构和性能的影响[D]. 西安: 陕西科技大学, 2019.

    ZHANG Jia. Effect of graphene oxide on structure and properties of cement-based composite[D]. Xi’an: Shaanxi University of Science and Technology, 2019(in Chinese).
    [60] LV S H, DENG L J, YANG W Q, et al. Fabrication of poly-carboxylate/graphene oxide nanosheet composites by copoly-merization for reinforcing and toughening cement composites[J]. Cement and Concrete Composites,2016,66:1-9. doi: 10.1016/j.cemconcomp.2015.11.007
    [61] ABRISHAMI M E, ZAHABI V. Reinforcing graphene oxide/cement composite with NH2 functionalizing group[J]. Bulletin of Materials Science,2016,39(4):1073-1078. doi: 10.1007/s12034-016-1250-7
    [62] LIN J L, SHAMSAEI E, DE SOUZA F B, et al. Dispersion of graphene oxide–silica nanohybrids in alkaline environment for improving ordinary Portland cement composites[J]. Cement and Concrete Composites,2020,106:103488. doi: 10.1016/j.cemconcomp.2019.103488
    [63] LU Z Y, HOU D S, HANIF A, et al. Comparative evaluation on the dispersion and stability of graphene oxide in water and cement pore solution by incorporating silica fume[J]. Cement and Concrete Composites,2018,94:33-42. doi: 10.1016/j.cemconcomp.2018.08.011
    [64] 吕生华, 马宇娟, 邱超超, 等. 氧化石墨烯对水泥石微观结构及性能的影响[J]. 混凝土, 2013(8):51-54. doi: 10.3969/j.issn.1002-3550.2013.08.014

    LV Shenghua, MA Yujuan, QIU Chaochao, et al. Effects of graphene oxide on microstructure of hardened cement paste and its properties[J]. Concrete,2013(8):51-54(in Chinese). doi: 10.3969/j.issn.1002-3550.2013.08.014
    [65] 吕生华, 孙婷, 马宇娟, 等. 纳米氧化石墨烯对水泥复合材料中水化晶体结构的控制及增韧作用[J]. 混凝土, 2013(11):1-6. doi: 10.3969/j.issn.1002-3550.2013.11.001

    LV Shenghua, SUN Ting, MA Yujuan, et al. Regulation of grapheme oxide on microstructure of hydration crystals of cement composites and its impact on reinforcing toughenss[J]. Concrete,2013(11):1-6(in Chinese). doi: 10.3969/j.issn.1002-3550.2013.11.001
    [66] LV S H, HU H, ZHANG J, et al. Fabrication of GO/cement composites by incorporation of few-layered GO nano-sheets and characterization of their crystal/chemical structure and properties[J]. Nanomaterials,2017,7(12):457-472. doi: 10.3390/nano7120457
    [67] 吕生华, 罗潇倩, 张佳, 等. 氧化石墨烯调控水泥基材料形成大规模规整结构及其性能表征[J]. 材料导报, 2017, 31(24):10-14. doi: 10.11896/j.issn.1005-023X.2017.024.003

    LV Shenghua, LUO Xiaoqian, ZHANG Jia, et al. Graphene oxide controlled cement materials formation of large-scale ordered structure and its properties characterization[J]. Materials Guide,2017,31(24):10-14(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.024.003
    [68] 吕生华, 孙立, 张佳, 等. 具有大规模规整致密花状微观结构形貌高/超高性能氧化石墨烯/水泥基复合材料[J]. 材料导报, 2017, 31(23):78-84. doi: 10.11896/j.issn.1005-023X.2017.023.010

    LV Shenghua, SUN Li, ZHANG Jia, et al. High/ultra-high performance graphene oxide/cement-based com-posite with large-scale, ordered and compact flower like microstructure[J]. Material Guide,2017,31(23):78-84(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.023.010
    [69] 吕生华, 贾春茂, 朱琳琳, 等. 氧化石墨烯对水泥水化产物及聚集状态的调控作用[J]. 精细化工, 2017, 34(5):576-581.

    LV Shenghua, JIA Chunmao, ZHU Linlin, et al. Regulation of graphene oxide on cement hydration products and their aggregates[J]. Fine Chemicals,2017,34(5):576-581(in Chinese).
    [70] 吕生华, 张佳, 殷海荣, 等. 氧化石墨烯调控水化产物增强增韧水泥基复合材料的研究进展[J]. 陕西科技大学学报, 2019, 37(3):136-145. doi: 10.3969/j.issn.1000-5811.2019.03.022

    LV Shenghua, ZHANG Jia, YIN Hairong, et al. Research progress of graphene oxide reinforced and toughened cement-based composite[J]. Journal of Shaanxi University of Science and Technology,2019,37(3):136-145(in Chinese). doi: 10.3969/j.issn.1000-5811.2019.03.022
    [71] 吕生华, 张佳, 罗潇倩, 等. 氧化石墨烯/水泥基复合材料的微观结构和性能[J]. 材料研究学报, 2018, 32(3):233-240.

    LV Shenghua, ZHANG Jia, LUO Xiaoqian. Microstruture and properties for composites of graphene oxide/cement[J]. Chinese Journal of Materials Research,2018,32(3):233-240(in Chinese).
    [72] 王奕璇, 柴军瑞, 曹靖, 等. 多层氧化石墨烯-水泥基复合材料的力学性能与微观结构[J]. 应用力学学报, 2020, 37(2):860-865.

    WANG Yixuan, CHAI Junrui, CAO Jing, et al. Mechanical properties and microstructure of multilayer graphene oxide cement-based composite[J]. Chinese Journal of Applied Mechanics,2020,37(2):860-865(in Chinese).
    [73] PENG H, GE Y P, CAI C S, et al. Mechanical properties and microstructure of graphene oxide cement-based compo-sites[J]. Construction and Building Materials,2019,194:102-109. doi: 10.1016/j.conbuildmat.2018.10.234
    [74] ZENG H Y, QU S, QIN Y H. Microstructure and transport properties of cement-based material enhanced by graphene oxide[J/OL]. Magazine of Concrete Research, 2020, https://doi.org/ 10.1680/jmacr.19.00558. DOI: 10.1680/jmacr.19.00558.
    [75] 张迪, 梁颖晶. 氧化石墨烯对水泥宏观力学性能及水化进程的影响研究[J]. 混凝土, 2019(12):37-41.

    ZHANG Di, LIANG Yingjing. Effect of graphene oxide on macro mechanical properties and hydration process of cement[J]. Concrete,2019(12):37-41(in Chinese).
    [76] 徐朋辉, 李相国, 刘卓霖, 等. 氧化石墨烯对粉煤灰水泥的水化和力学性能的影响[J]. 硅酸盐通报, 2016, 35(12):4066-4069.

    XU Penghui, LI Xiangguo, LIU Zhuolin, et al. Influence of graphene oxide on hydration and mechanical properties of fly ash-cement[J]. Bulletin of The Chinese Ceramic Society,2016,35(12):4066-4069(in Chinese).
    [77] QURESHI T S, PANESAR D K, SIDHUREDDY B, et al. Nano-cement composite with graphene oxide produced from epigenetic graphite deposit[J]. Composites Part B: Engineering,2019,159:248-258. doi: 10.1016/j.compositesb.2018.09.095
    [78] 王琴, 李时雨, 王健, 等. 氧化石墨烯对水泥水化进程及其主要水化产物的影响[J]. 硅酸盐学报, 2018, 46(2):163-172.

    WANG Qin, LI Shiyu, WANG Jian. Effect of graphene oxide on hydration process and main hydration products of cement[J]. Journal of The Chinese Ceramic Society,2018,46(2):163-172(in Chinese).
    [79] HOU D S, LU Z Y, LI X Y, et al. Reactive molecular dynamics and experimental study of graphene-cement compo-sites: Structure, dynamics and reinforcement mechanisms[J]. Carbon,2017,115:188-208. doi: 10.1016/j.carbon.2017.01.013
    [80] 曹明莉, 张会霞, 张聪. 石墨烯对水泥净浆力学性能及微观结构的影响[J]. 哈尔滨工业大学学报, 2015, 47(12):26-30. doi: 10.11918/j.issn.0367-6234.2015.12.005

    CAO Mingli, ZHANG Huixia, ZHANG Cong. Effect of graphene on mechanical properties and microstructure of cement paste[J]. Journal of Harbin Institute of Technology,2015,47(12):26-30(in Chinese). doi: 10.11918/j.issn.0367-6234.2015.12.005
    [81] LIU J T, FU J L, YANG Y, et al. Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets[J]. Construction and Building Materials,2019,199:1-11. doi: 10.1016/j.conbuildmat.2018.12.006
    [82] REHMAN S K U, IBRAHIM Z, JAMEEL M, et al. Assessment of rheological and piezoresistive properties of graphene based cement composites[J]. International Journal of Concrete Structures and Materials,2018,12(1):64. doi: 10.1186/s40069-018-0293-0
    [83] 王琴, 王健, 吕春祥, 等. 氧化石墨烯水泥浆体流变性能的定量化研究(英文)[J]. 新型炭材料, 2016, 31(6):574-584. doi: 10.1016/S1872-5805(16)60033-1

    WANG Qin, WANG Jian, LV Chunxiang, et al. Rheological behavior of fresh cement pastes with a graphene oxide additive(English)[J]. New Carbon Materials,2016,31(6):574-584(in Chinese). doi: 10.1016/S1872-5805(16)60033-1
    [84] 方长乐. 氧化石墨烯对水泥基材料流变、硬化性能的影响及其硬化强化机理研究[D]. 深圳: 深圳大学, 2018.

    FANG Changle. Effect of graphene oxide on theologicial and hardened properties of cement-based materials and its strengthening mechanism on harden cement paste[D]. Shenzhen: Shenzhen University, 2018(in Chinese).
    [85] 孙胜伟. 多层石墨烯复合水泥基材料的多功能与智能特性[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    SUN Shengwei. Multifunctional and intelligent properties of multi-layer graphene composite cement-based materials[D]. Harbin: Harbin University of Technology, 2017(in Chinese).
    [86] 张则瑞, 吴建东, 杨敬斌, 等. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2):240-245.

    ZHANG Zerui, WU Jiandong, YANG Jingbin, et al. Effect of graphene oxide on properties of cement-based self-leveling mortar[J]. Material Guide,2019,33(2):240-245(in Chinese).
    [87] 孙婷. 氧化石墨烯对水泥基材料结构与性能的影响[D]. 西安: 陕西科技大学, 2015.

    SUN Ting. Effect of go on the structure and properties of cement-based materials[D]. Xi’an: Shaanxi University of Science and Technology, 2015(in Chinese).
    [88] 吕生华, 崔亚亚, 孙婷, 等. 氧化石墨烯对水泥净浆流动度及水泥石结构和性能的影响[J]. 功能材料, 2015, 46(4):4051-4056. doi: 10.3969/j.issn.1001-9731.2015.04.010

    LV Shenghua, CUI Yaya, SUN Ting, et al. The effect of graphene oxide on the fluidity of cement paste and the structure and properties of cement paste[J]. Functional Materials,2015,46(4):4051-4056(in Chinese). doi: 10.3969/j.issn.1001-9731.2015.04.010
    [89] SHANG Y, ZHANG D. YANG C, et al. Effect of graphene oxide on the rheological properties of cement pastes[J]. Construction and Building Materials,2015,96:20-28. doi: 10.1016/j.conbuildmat.2015.07.181
    [90] 崔鑫有. 氧化石墨烯对水泥粉煤灰体系的性能影响及作用机理研究[D]. 北京: 北京建筑大学, 2018.

    CUI Xinyou. Effect of graphene oxide on properties and mechanism of cement fly ash system[D]. Beijing: Beijing University of Architecture, 2018(in Chinese).
    [91] WANG M, YAO H, WANG R M, et al. Chemicallyfunctionalized graphene oxide as the additive for cement-matrix composite with enhanced fluidity and toughness[J]. Construction and Building Materials,2017,150:150-156. doi: 10.1016/j.conbuildmat.2017.05.217
    [92] SUN J, YUAN D, LI J P, et al. A new graphene derivative: Hydroxylated graphene with excellent biocompatibility[J]. ACS Applied Materials & Interfaces,2016,8:10226-10233. doi: 10.1021/acsami.6b02032
    [93] 彭晖, 戈娅萍, 杨振天, 等. 氧化石墨烯增强水泥基复合材料的力学性能及微观结构[J]. 复合材料学报, 2018, 35(8):2132-2139.

    PENG Hui, GE Yaping, YANG Zhentian, et al. Mechanical properties and microstructure of graphene oxide reinforced cement-based composite[J]. Acta Materiae Compositae Sinica,2018,35(8):2132-2139(in Chinese).
    [94] KIAMAHALLEH M V, GHOLAMPOUR A, TRAN D N H, et al. Physiochemical and mechanical properties of reduced graphene oxide-cement mortar composites: Effect of reduced graphene oxide particle size[J]. Construction and Building Materials,2020,250:118832. doi: 10.1016/j.conbuildmat.2020.118832
    [95] WANG Y H, YANG J W, OUYANG D. Effect of graphene oxide on mechanical properties of cement mortar and itsstrengthening mechanism[J]. Materials,2019,12(22):3753. doi: 10.3390/ma12223753
    [96] 李相国, 任钊锋, 徐朋辉, 等. 氧化石墨烯复合PVA纤维增强水泥基材料的力学性能及耐久性研究[J]. 硅酸盐通报, 2018, 37(1):245-250.

    LI Xiangguo, REN Zhaofeng, XU Penghui, et al. Research on mechanical properties and durability of graphene oxide composite PVA fiber reinforced cement-based material[J]. Bulletin of The Chinese Ceramic Society,2018,37(1):245-250(in Chinese).
    [97] 饶春华. 氧化石墨烯水泥基再生混凝土材料主要力学性能试验与分析[D]. 南昌: 南昌大学, 2016.

    RAO Chunhua. Test and analysis on major mechanical properties of cement-based recycled concrete of graphene oxide[D]. Nanchang: Nanchang University, 2016(in Chinese).
    [98] 陈亚兵. GO-PC复掺高性能混凝土的制备与性能研究[D]. 武汉: 武汉工程大学, 2017.

    CHEN Yabing. Preparation and property of GO-PC compound high performance concrete[D]. Wuhan: Wuhan University of Engineering, 2017(in Chinese).
    [99] 陈宝锐, 吴其胜, 诸华军, 等. 石墨烯/水泥基复合材料的制备与性能[J]. 材料科学与工程学报, 2018, 36(4):650-655.

    CHEN Baorui, WU Qisheng, ZHU Huajun, et al. Preparation and properties of graphene cement-based composite materials[J]. Journal of Materials Science & Engineering,2018,36(4):650-655(in Chinese).
    [100] HAN B G, ZHENG Q F, SUN S, et al. Enhancing mechanisms of multi-layer graphenes to cementitious compo-sites[J]. Composites Part A: Applied Science and Manufacturing,2017,101:143-150. doi: 10.1016/j.compositesa.2017.06.016
    [101] 于影, 蒋林华, 徐宁, 等. 石墨烯对硫氧镁水泥强度的影响及机理分析[J]. 混凝土, 2018(12):76-80. doi: 10.3969/j.issn.1002-3550.2018.12.019

    YU Ying, JIANG Linhua, XU Ning, et al. Effect of graphene on the strength of magnesium oxysulfate cement and mechanism analysis[J]. Concrete,2018(12):76-80(in Chinese). doi: 10.3969/j.issn.1002-3550.2018.12.019
    [102] SUN H F, LING L, REN Z L, et al. Effect of graphene oxide/graphene hybrid on mechanical properties of cement mortar and mechanism investigation[J]. Nanomaterials,2020,10(1):1-13.
    [103] 袁小亚, 曾俊杰, 高军, 等. 氧化石墨烯与石墨烯复掺对水泥砂浆性能影响研究[J]. 重庆交通大学学报(自然科学版), 2019, 38(9):45-50.

    YUAN Xiaoya, ZENG Junjie, GAO Jun, et al. Effect of addition of graphene oxide and graphene on properties of cement mortar[J]. Journal of Chongqing Jiaotong University (Natural Science),2019,38(9):45-50(in Chinese).
    [104] TRAGAZIKIS I Κ, DASSIOs K G, DALLA P T, et al. Acoustic emission investigation of the effect of graphene on the fracture behavior of cement mortars[J]. Engineering Fracture Mechanics,2019,210:444-451. doi: 10.1016/j.engfracmech.2018.01.004
    [105] PAN Z, HE L, QIU L, et al. Mechanical properties and microstructure of a graphene oxide–cement composite[J]. Cement and Concrete Composites,2015,58:140-147. doi: 10.1016/j.cemconcomp.2015.02.001
    [106] LI M, WANG H, ZHANG C, et al. The effect of graphene oxide grafted carbon fiber on mechanical properties of class G Portland cement[J]. Journal of Adhesion Science and Technology,2019,33(22):2494-2516. doi: 10.1080/01694243.2019.1646848
    [107] 赵晓艳, 王江昆, 卿龙邦, 等. 氧化石墨烯改性水泥砂浆断裂性能研究[J]. 混凝土, 2019(4):117-120. doi: 10.3969/j.issn.1002-3550.2019.04.027

    ZHAO Xiaoyan, WANG Jiangkun, QING Longbang, et al. Study on fracture properties of graphene oxide modified cement mortar[J]. Concrete,2019(4):117-120(in Chinese). doi: 10.3969/j.issn.1002-3550.2019.04.027
    [108] DU S, JIANG Y, ZHONG J, et al. Surface abrasion resistance of high-volume fly ash concrete modified by graphene oxide: Macro-and micro-perspectives[J]. Construction and Building Materials,2020,237:1-16.
    [109] LI G, YUAN J B, ZHANG Y H, et al. Microstructure and mechanical performance of graphene reinforced cementitious composites[J]. Composites Part A: Applied Science and Manufacturing,2018,114:188-195. doi: 10.1016/j.compositesa.2018.08.026
    [110] BAI S Y, JIANG L H, XU N, et al. Enhancement of mechanical and electrical properties of graphene/cement composite due to improved dispersion of graphene by addition of silica fume[J]. Construction and Building Materials,2018,164:433-441. doi: 10.1016/j.conbuildmat.2017.12.176
    [111] 蒋林华, 白舒雅, 金鸣, 等. 石墨烯水泥基复合材料的电导率研究[J]. 哈尔滨工程大学学报, 2018, 39(3):601-606.

    JIANG Linhua, BAI Shuya, JIN Ming, et al. Research on electrical conductivity of graphene reinforced cement-based composites[J]. Journal of Harbin Engineering University,2018,39(3):601-606(in Chinese).
    [112] BAI S Y, JIANG L H, JIANG Y, et al. Research on electrical conductivity of graphene/cement composites[J]. Advances in Cement Research,2020,32(2):45-52. doi: 10.1680/jadcr.16.00170
    [113] LIU Y S, WANG M Z, WANG W. Electric induced curing of graphene/cement-based composites for structural strength formation in deep-freeze low temperature[J]. Materials & Design,2018,160:783-793.
    [114] LI X Y, WANG L H, LIU Y Q, et al. Dispersion of graphene oxide agglomerates in cement paste and its effects on electrical resistivity and flexural strength[J]. Cement and Concrete Composites,2018,92:145-154. doi: 10.1016/j.cemconcomp.2018.06.008
    [115] LI W G, LI X Y, CHEN S J, et al. Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste[J]. Construction and Building Materials,2017,136:506-514. doi: 10.1016/j.conbuildmat.2017.01.066
    [116] KAUR R, KOTHIYAl N C. Comparative effects of sterically stabilized functionalized carbon nanotubes and graphene oxide as reinforcing agent on physico- mechanical properties and electrical resistivity of cement nanocompo-sites[J]. Construction and Building Materials,2019,202:121-138. doi: 10.1016/j.conbuildmat.2018.12.220
    [117] CUI X, SUN S, HAN B, et al. Mechanical, thermal and electromagnetic properties of nanographite platelets modified cementitious composites[J]. Composites Part A: Applied Science and Manufacturing,2017,93:49-58. doi: 10.1016/j.compositesa.2016.11.017
    [118] 吴其胜, 陈宝锐, 诸华军, 等. 热压制备改性石墨烯-水泥基复合材料: 改善微观结构、导热性能和力学性能[J]. 材料导报, 2018, 32(10):1701-1706. doi: 10.11896/j.issn.1005-023X.2018.10.025

    WU Qisheng, CHEN Baorui, ZHU Huajun, et al. Preparation of modified graphene cement based composite by hot pressing: Improving microstructure, thermal conductivity and mechanical properties[J]. Material Guide,2018,32(10):1701-1706(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.10.025
    [119] JING G J, YE Z M, WU J M, et al. Introducing reduced graphene oxide to enhance the thermal properties of cement composites[J]. Cement and Concrete Composites,2020,109:103559. doi: 10.1016/j.cemconcomp.2020.103559
    [120] DU H J, GAO H J, DAI P S. Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet[J]. Cement and Concrete Research,2016,83:114-123. doi: 10.1016/j.cemconres.2016.02.005
    [121] 杨雅玲, 袁小亚, 沈旭, 等. 氧化石墨烯改性水泥砂浆耐腐蚀性能的研究[J]. 功能材料, 2017, 48(5):5144-5148.

    YANG Yaling, YUAN Xiaoya, SHEN Xu, et al. Study on corrosion resistance of graphene oxide modified cement mortar[J]. Functional Materials,2017,48(5):5144-5148(in Chinese).
    [122] 龚建清, 林立. 氧化石墨烯/碳纳米管水泥基复合材料的抗冻性研究[J]. 硅酸盐通报, 2018, 37(11):3410-3415.

    GONG Jianqing, LIN Li. Study on frost resistance of GO/CNTs cementitious composites[J]. Bulletin of The Chinese Ceramic Society,2018,37(11):3410-3415(in Chinese).
    [123] 陈黎. 石墨烯水泥基导电复合材料性能研究及冻融循环的影响[J]. 应用技术版, 2019, 15(10):37-40.

    CHEN Li. Study on the properties of graphene cement-based conductive composite and the influence of freeze-thaw cycle[J]. Highway Transportation Technology (Application Technology Edition),2019,15(10):37-40(in Chinese).
    [124] 富恩昊. 氧化石墨烯再生混凝土力学性能和抗冻耐久性试验研究[D]. 沈阳: 沈阳建筑大学, 2018.

    FU Enhao. Experimental study on mechanical properties and frost resistance durability of recycled graphite oxide concrete[D]. Shenyang: Shenyang University of Architecture, 2018(in Chinese).
    [125] DU H, DAI P S. Enhancement of barrier properties of cement mortar with graohene nanoplatelet[J]. Cement and Concrete Research,2015(76):10-19.
    [126] LIU Q, XU Q F, YU Q, et al. Experimental investigation on mechanical and piezoresistive properties of cement-itious materials containing graphene and graphene oxide nanoplatelets[J]. Construction and Building Materials,2016,127:565-576. doi: 10.1016/j.conbuildmat.2016.10.024
    [127] XU J M, ZHANG D. Pressure-sensitive properties of emulsion modified graphene nanoplatelets/cement compo-sites[J]. Cement and Concrete Composites,2017,84:74-82. doi: 10.1016/j.cemconcomp.2017.07.025
    [128] 刘衡, 孙明清, 李俊, 等. 掺纳米石墨烯片的水泥基复合材料的压敏性[J]. 功能材料, 2015, 46(16):16064-16068.

    LIU Heng, SUN Mingqing, LI Jun, et al. Pressure sensitivity of cement-based composite with nano graphene sheets[J]. Functional Materials,2015,46(16):16064-16068(in Chinese).
    [129] 刘伯伟. 三种新型碳材料水泥基复合材料的制备及压敏性对比研究[D]. 北京: 北京建筑大学, 2016.

    LIU Bowei. Comparative study of the preparation and piezoresistivity of three new carbon materials based cement composites[D]. Beijing: Beijing University of Architecture, 2016(in Chinese).
    [130] 刘衡. 掺纳米石墨烯片水泥基复合材料的机敏性研究[D]. 武汉: 武汉理工大学, 2015.

    LIU Heng. A study on the mechanism of nano-graphene-doped cement-based composites[D]. Wuhan: Wuhan University of Technology, 2015(in Chinese).
    [131] 吴文鑫, 康志斌, 王洁, 等. 石墨烯智能混凝土在正交和斜交于受力方向的压敏响应[J]. 混凝土与水泥制品, 2018, 5:15-18. doi: 10.3969/j.issn.1000-4637.2018.08.004

    WU Wenxin, KANG Zhibin, WANG Jie, et al. Pressure-sensitive response of graphene intelligent concrete in orthogonal and oblique directions[J]. Concrete and Cement Products,2018,5:15-18(in Chinese). doi: 10.3969/j.issn.1000-4637.2018.08.004
    [132] DAI P S, GAO H J, XU C, et al. Strain and damage self-sensing cement composites with conductive graphene nanoplatelet[C]//Society of Photo-Optical Instrumentation Engineers(SPIE) Conference Series, 2014: 906126.
    [133] LIU Q, WU W X, XIAO J Z, et al. Correlation between damage evolution and resistivity reaction ofconcrete in-filled with graphene nano-platelets[J]. Construction and Building Materials,2019,208:482-491.
    [134] CHEN Z S, XU Y M, HUA J M, et al. Modeling shrinkage and creep for concrete with graphene oxide nanosheets[J]. Materials,2019,12(19):3153. doi: 10.3390/ma12193153
    [135] 王瑶, 徐亦冬, 潘志宏, 等. 氧化石墨烯对水泥基复合材料自收缩的影响[J]. 功能材料, 2020, 51(3):3108-3113.

    WANG Yao, XU Yidong, PAN Zhihong, et al. Effect of graphene oxide on self shrinkage of cement-based composite[J]. Functional Materials,2020,51(3):3108-3113(in Chinese).
    [136] 曾鞠庆. 掺入纳米氧化石墨烯水泥基复合材料体积稳定性研究[D]. 镇江: 江苏科技大学, 2019.

    ZENG Juqing. Reserach on volume stability of nano-graphene oxide cement-based composites[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019(in Chinese).
    [137] 徐亦冬, 曾鞠庆, 陈伟, 等. 氧化石墨烯增强水泥基复合材料的研究现状及展望[J]. 材料导报, 2017, 31(12):150-155.

    XU Yidong, ZENG Juqing, CHEN Wei, et al. Current status and prospect of graphene oxide reinforced cement matrix composites[J]. Material Guide,2017,31(12):150-155(in Chinese).
    [138] LONG W J, GU Y C, MA H Y, et al. Mitigating the electromagnetic radiation by coupling use of waste cathode-ray tube glass and graphene oxide on cement composites[J]. Composites Part B: Engineering,2019,168:25-33. doi: 10.1016/j.compositesb.2018.12.050
    [139] 吴文鑫, 田雨婷, 陈锦毅, 等. 用于结构损伤自监测的智能混凝土电阻—损伤试验研究[J]. 新型建筑材料, 2019, 2:27-31. doi: 10.3969/j.issn.1001-702X.2019.02.007

    WU Wenxin, TIAN Yuting, CHEN Jinyi, et al. Experimental study on resistance-damage of intelligent concrete for self-monitoring of structural damage[J]. New Building Materials,2019,2:27-31(in Chinese). doi: 10.3969/j.issn.1001-702X.2019.02.007
    [140] 徐义洪, 范颖芳. 盐冻环境下氧化石墨烯混凝土力学损伤试验研究[J]. 混凝土与水泥制品, 2019, 5:9-18.

    XU Yihong, FAN Yingfang. Mechanics of graphene oxide concrete in salt frozen environment damage test study[J]. Concrete and Cement Products,2019,5:9-18(in Chinese).
    [141] ELOWE S, SHI G, ZHANG Y B, et al. The role of electrolyte acid concentration in the electrochemical exfoliationof graphite: Mechanism and synthesis of electrochemical graphene oxide[J]. Nano Materials Science,2019,1(3):215-223. doi: 10.1016/j.nanoms.2019.07.001
    [142] PEI S F, WEI Q W, HUANG K, et al. Green synthesis of graphene oxide by secondstimescale water electrolytic oxidation[J]. Nature Communications,2018,145(9):1-8.
  • 加载中
图(4)
计量
  • 文章访问数:  1753
  • HTML全文浏览量:  709
  • PDF下载量:  427
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-11
  • 录用日期:  2020-08-27
  • 网络出版日期:  2020-09-02
  • 刊出日期:  2021-02-15

目录

    /

    返回文章
    返回