留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模具对复合材料层合板固化成型影响的数值分析

刘馨阳 赵海涛 袁明清 鞠雪梅 张博明 陈吉安

刘馨阳, 赵海涛, 袁明清, 等. 模具对复合材料层合板固化成型影响的数值分析[J]. 复合材料学报, 2021, 38(6): 1974-1983. doi: 10.13801/j.cnki.fhclxb.20200831.002
引用本文: 刘馨阳, 赵海涛, 袁明清, 等. 模具对复合材料层合板固化成型影响的数值分析[J]. 复合材料学报, 2021, 38(6): 1974-1983. doi: 10.13801/j.cnki.fhclxb.20200831.002
LIU Xinyang, ZHAO Haitao, YUAN Mingqing, et al. Numerical analysis of the effect of mold on the curing of composite laminates[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1974-1983. doi: 10.13801/j.cnki.fhclxb.20200831.002
Citation: LIU Xinyang, ZHAO Haitao, YUAN Mingqing, et al. Numerical analysis of the effect of mold on the curing of composite laminates[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1974-1983. doi: 10.13801/j.cnki.fhclxb.20200831.002

模具对复合材料层合板固化成型影响的数值分析

doi: 10.13801/j.cnki.fhclxb.20200831.002
基金项目: 上海航天科技创新基金(SAST2018-021)
详细信息
    通讯作者:

    赵海涛,博士,副研究员,硕士生导师,研究方向为复合材料力学性能评价及固化模拟 E-mail:zht@sjtu.edu.cn

  • 中图分类号: TB332

Numerical analysis of the effect of mold on the curing of composite laminates

  • 摘要: 针对复合材料层合结构与模具在固化工艺中的相互作用进行研究以提高制备精度。考虑摩擦力和粘结力在模具和制件接触界面间的共同作用,改进一种复合材料层合结构固化应变及应力情况的数值计算模型并与已有实验结果进行比较。引入弹簧单元建立固化工艺有限元模型,并对解析模型进行验证。最后通过解析模型对固化变形的影响因素进行探究。结果表明:所建立的解析预报模型具有较高的计算精度及一定的实用性;考虑模具作用的有限元模型可以更好地对层合板的变形趋势进行预报和分析。通过解析模型探究发现层合板长度、模具材料和表面情况均会对固化过程中的层间滑移产生影响,对工艺条件制定具有更好的指导意义。

     

  • 图  1  固化过程中预浸料的受力及变形情况

    Figure  1.  Stress and deformation of prepreg during curing

    图  2  复合材料层合板解析计算模型

    Figure  2.  Analytical calculation model of composite laminates

    τ—Shear stress; h1—Thickness of laminate; h2—Thickness of mold; u—Displacement; E1—Elastic modulus of laminate; E2—Elastic modulus of mold; σ—Normal stress; l—1/2 length of the laminate

    图  3  滑动摩擦力作用下构件受力情况

    Figure  3.  Forces of components under sliding friction

    dx—Length of the differential unit of laminate; dσ— Normal stress increment of the differential unit of laminate

    图  4  滑动摩擦力影响下的复合材料层合板应力分布

    Figure  4.  Stress distribution of composite laminates under the influence of sliding friction

    图  5  粘结力作用下复合材料层合板界面受力情况

    Figure  5.  Interface force of composite laminates under the action of bonding force

    图  6  复合材料层合板界面在粘结力作用下的应力分布

    Figure  6.  Stress distribution of the interface of composite laminates under the action of bonding force

    图  7  复合材料层合板固化温度历程

    Figure  7.  Time course of curing temperature of composite laminates

    图  8  复合材料层合板固化度历程

    Figure  8.  Time course of curing degree of composite laminate

    图  9  有限元模型与解析模型复合材料层合板应变情况对比

    Figure  9.  Comparison of strain of composite laminate between finite element model and analytical model

    图  10  复合材料层合板轴向应变

    Figure  10.  Axial strain of composite laminates

    图  11  复合材料层合板不同长度下的应变分布

    Figure  11.  Strain distribution under different lengths of composite laminates

    图  12  复合材料层合板及模具在不同厚度下的应变情况

    Figure  12.  Strain of composite laminates and molds at different thicknesses

    图  13  构件在不同材料模具下的应变分布

    Figure  13.  Strain distribution of components under different materal imolds

    图  14  不同模具表面处理情况下构件应变情况分布

    Figure  14.  Distribution of component strain under different mold surface treatments

    表  1  材料性能参数[8, 16]

    Table  1.   Parameters for the materials[8, 16]

    MaterialYoung’s modulus/GPaCoefficient of thermal expansion/(10−6−1)Poisson’s ratio
    90°90°
    T300 carbon fiber 230 35 −1.5 27 0.28
    Aluminium 72 22 0.32
    5428 resin 3.5×10−3 44.1 44.1 0.35
    Note: Young’s modulus of 5428 resin is $E_{\rm{m}}^0$.
    下载: 导出CSV

    表  2  碳纤维/双马5428材料参数[16]

    Table  2.   Material properties of carbon fiber/BMI5428[16]

    ParameterValue
    ρc/(kg∙m−3) 1 614
    c/(J∙(W∙℃)−1) 1 050
    K11/(W∙(m∙℃)−1) 0.851
    K22=K33/(W∙(m∙℃)−1) 0.426
    Fiber volume fraction/vol% 60
    α11/10−6−1 0.19
    α22/10−6−1 40.3
    Notes: ρc—Density of composite laminates; c—Specific heat capacity of composite laminates; K11, K22, K33—Anisotropic thermal conductivities; α11, α22—Longitudinal and transverse thermal expansion coefficients.
    下载: 导出CSV
  • [1] TWIGG G, POURSARTIP A, FERNLUND G. An experimental method for quantifying tool-part shear interaction during composites processing[J]. Composites Science and Technology,2003,63(13):1985-2002. doi: 10.1016/S0266-3538(03)00172-6
    [2] TWIGG G, POURSARTIP A, FERNLUND G. Tool-part interaction incomposites processing, Part I: Experimental investigation andanalytical model[J]. Composites Part A: Applied Science & Manufacturing,2004,35:121-133. doi: 10.1016/S1359-835X(03)00131-3
    [3] TWIGG G, POURSARTIP A, FERNLUND G. Tool-part interaction incomposites processing, PartⅡ: Numerical modeling[J]. Composites Part A: Applied Science & Manufacturing,2004,35:135-141. doi: 10.1016/S1359-835X(03)00132-5
    [4] SATISH K B, LLOYD V S. A linear finite element model topredict processing-induced distortion in FRP laminates[J]. Composites Part A: Applied Science & Manufacturing,2005,36:1666-1674. doi: 10.1016/j.compositesa.2005.03.018
    [5] KAPPEL E, STEFANIAK D, SPRÖWITZ T, et al. A semi-analytical simulation strategy and its application to warpage of autoclave-processed CFRP parts[J]. Composites Part A: Applied Science & Manufacturing,2011,42(12):1985-1994.
    [6] 岳广全, 张博明, 戴福洪, 等. 固化过程中模具与复合材料构件相互作用分析[J]. 复合材料学报, 2010, 27(6):167-171.

    YUE G Q, ZHANG B M, DAI F H, et al. Interaction between mold and composite parts during curing process[J]. Acta Materiae Compositae Sinica,2010,27(6):167-171(in Chinese).
    [7] 岳广全, 张嘉振, 张博明. 模具对复合材料构件固化变形的影响分析[J]. 复合材料学报, 2013, 30(4):212-216.

    YUE G Q, ZHANG J Z, ZHANG B M. Influence of mold on cured-induced deformation of composites structure[J]. Acta Materiae Compositae Sinica,2013,30(4):212-216(in Chinese).
    [8] 元振毅, 王永军, 王俊彪, 等. 基于模具-制件相互作用的复合材料制件固化变形数值模型[J]. 复合材料学报, 2016, 33(4):902-909.

    YUAN Z Y, WANG Y J, WANG J B, et al. Numerical model on curing deformation of composite part based on tool-part interaction[J]. Acta Materiae Compositae Sinica,2016,33(4):902-909(in Chinese).
    [9] 孙亮亮, 王继辉, 丁安心. 复合材料成形过程中模具-构件作用的一种表征方法[J]. 应用数学和力学, 2016, 37(3):245-255.

    SUN L L, WANG J H, DING A X. Characterization of the tool-part interaction during the curing of CFRP composites[J]. Applied Mathematics and Mechanics,2016,37(3):245-255(in Chinese).
    [10] 杨晓波, 湛利华, 蒋成标, 等. 模具材料对复合材料制件固化过程应变的影响分析[J]. 南京航空航天大学学报, 2018, 50(1):24-29.

    YANG X B, ZHAN L H, JIANG C B, et al. Influence of mould materials on curing process and deformation of composite part[J]. Journal of Nanjing University of Aeronautics and Astronautics,2018,50(1):24-29(in Chinese).
    [11] 蒋成标, 湛利华, 杨晓波, 等. 模具构件相互作用对复合材料固化应变的影响分析[J]. 玻璃钢/复合材料, 2018(6):11-15.

    JIANG C B, ZHAN L H, YANG X B, et al. Influence of tool-part interaction on cure-induced strain in composite[J]. Fiber Rnforced Plastics/Composites,2018(6):11-15(in Chinese).
    [12] 刘德博, 湛利华, 丁星星, 等. 模具表面状态对复合材料构件固化变形的影响[J]. 宇航材料工艺, 2019, 49(1):63-67.

    LIU D B, ZHAN L H, DING X X, et al. Influence of tool surface condition on cure-induced deformation of composite structure[J]. Aerospace Materials & Technology,2019,49(1):63-67(in Chinese).
    [13] 唐占文, 张博明. 复合材料设计制造一体化中的固化变形预报技术[J]. 航空制造技术, 2014(15):32-37. doi: 10.3969/j.issn.1671-833X.2014.15.003

    TANG Z W, ZHANG B M. Prediction of curing deformation in integrated design and manufacture of composites[J]. Aeronautical Manufacturing Technology,2014(15):32-37(in Chinese). doi: 10.3969/j.issn.1671-833X.2014.15.003
    [14] ARAFATH A R A, VAZIRI R, POURSARTIP A. Closed-form solution for process-induced stresses and deformation of a composite part cured on a solid tool: Part II-Curved geometries[J]. Composites Part A: Applied Science & Manufacturing,2009,40(10):1545-1557.
    [15] NASIR M N M, AMINANDA Y, MEZEIX L, et al. Spring-back simulation of flat symmetrical laminates with angled plies manufactured through autoclave processing[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2016, 152(1): 012046.
    [16] 岳广全. 整体化复合材料壁板结构固化变形模拟及控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    YUE G Q. Study on simulation and control method of cure-induced deformation for integrated composite panel[D]. Harbin: Harbin Institute of Technology, 2010(in Chinese).
    [17] 胡海晓. 碳纤维增强热固性复合材料固化变形机理实验研究[D]. 武汉: 武汉理工大学, 2016.

    HU H X. Experimental study on curing deformation mechanism of carbon fiber reinforced thermosetting compo-sites[D]. Wuhan: Wuhan University of Technology, 2016(in Chinese).
    [18] SVANBERG J M, HOLMBERG J A. Prediction of shape distortions Part I. FE-implementation of a path dependent constitutive model[J]. Composites Part A: Applied Science & Manufacturing,2004,35(6):711-721. doi: 10.1016/j.compositesa.2004.02.005
    [19] 元振毅, 王永军, 张跃, 等. 基于材料性能时变特性的复合材料固化过程多场耦合数值模拟[J]. 复合材料学报, 2015, 32(1):167-175.

    YUAN Z Y, WANG Y J, ZHANG Y, et, al. Multi-field coupled numerical simulation for curing process of composites with time-dependent properties of materials[J]. Acta Materiae Compositae Sinica,2015,32(1):167-175(in Chinese).
    [20] 贺继林, 蒙元明, 王特, 等. 基于材料物性参数时变特性的复合材料层合板固化残余应变应力数值模拟[J]. 玻璃钢/复合材料, 2017(5):41-47.

    HE J L, MENG Y M, WANG T, et al. Numerical simulation of curing residual stress and strain of composite laminates with time-dependent physical parameters of materials[J]. Fiber Reinforced Plastics/Composites,2017(5):41-47(in Chinese).
    [21] BROUWER W D. VAN HERPT E. LABORDUS M. Vacuum injection moulding for large structural application[J]. Composites Part A: Applied Science & Manufacturing,2003(34):551-558.
    [22] HOSSEINI-TOUDESHKY H, SADIGHI M, VOJDANI A. Effects of curing thermal residual stresses on fatigue crack propagation of aluminum plates repaired by FML patches[J]. Composite Structures,2013,100:154-162. doi: 10.1016/j.compstruct.2012.12.052
    [23] WUCHER B, LANI F, PARDOEN T, et al. Tooling geometry optimization for compensation of cure-induced distortions of a curved carbon/epoxy C-spar[J]. Composites Part A: Applied Science & Manufacturing,2014,56:27-35. doi: 10.1016/j.compositesa.2013.09.010
    [24] 李斌. 航空复合材料曲面结构件固化变形和残余应力研究[D]. 沈阳: 沈阳航空航天大学, 2019.

    LI B. The research of residual stress and deformation in the curing-process of composite surface part in aircraft industry[D]. Shenyang: Shenyang Aerospace University, 2019(in Chinese).
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  1213
  • HTML全文浏览量:  374
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-01
  • 录用日期:  2020-08-15
  • 网络出版日期:  2020-09-01
  • 刊出日期:  2021-06-23

目录

    /

    返回文章
    返回