留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带状γ-Fe2O3/ZnO异质结光催化剂光催化降解四环素

罗灵芝 俞俊 罗豪 吴慧 肖禾 陈礼辉 黄六莲

罗灵芝, 俞俊, 罗豪, 等. 带状γ-Fe2O3/ZnO异质结光催化剂光催化降解四环素[J]. 复合材料学报, 2021, 38(5): 1535-1542. doi: 10.13801/j.cnki.fhclxb.20200826.001
引用本文: 罗灵芝, 俞俊, 罗豪, 等. 带状γ-Fe2O3/ZnO异质结光催化剂光催化降解四环素[J]. 复合材料学报, 2021, 38(5): 1535-1542. doi: 10.13801/j.cnki.fhclxb.20200826.001
LUO Lingzhi, YU Jun, LUO Hao, et al. Photocatalytic degradation of tetracycline by band-like γ-Fe2O3/ZnO heterojunction photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1535-1542. doi: 10.13801/j.cnki.fhclxb.20200826.001
Citation: LUO Lingzhi, YU Jun, LUO Hao, et al. Photocatalytic degradation of tetracycline by band-like γ-Fe2O3/ZnO heterojunction photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1535-1542. doi: 10.13801/j.cnki.fhclxb.20200826.001

带状γ-Fe2O3/ZnO异质结光催化剂光催化降解四环素

doi: 10.13801/j.cnki.fhclxb.20200826.001
基金项目: “十三五”国家重点研发计划(2017YFD601005);国家自然科学基金(31700519);中国博士后科学基金资助项目(2020T130215)
详细信息
    通讯作者:

    肖禾,博士,讲师,硕士生导师,研究方向为光催化环境和能源材料 E-mail:xiaohe_river@163.com

  • 中图分类号: O643.36

Photocatalytic degradation of tetracycline by band-like γ-Fe2O3/ZnO heterojunction photocatalyst

  • 摘要: 针对传统ZnO光催化活性不高的问题,采用Zn(CH3COO)2和FeCl3作为ZnO和Fe2O3的前驱体,水热条件下采用“一锅法”制备带状γ-Fe2O3/ZnO异质结光催化剂,采用XRD、BET比表面积测量仪、TEM、紫外-可见漫反射、电子顺磁共振(EPR)等对其晶体化学结构进行表征。在可见光光源下,探究了不同γ-Fe2O3负载量时γ-Fe2O3/ZnO异质结光催化剂对四环素的光催化降解的效果。研究表明,ZnO负载γ-Fe2O3后比表面积和光照吸收显著改善,禁带宽度有所减小,可见光光照120 min,n(Zn)∶n(Fe) (原子比)为20∶1的γ-Fe2O3/ZnO异质结光催化剂对四环素的降解率高达97.2%,多次重复使用后四环素的降解率保持在95%以上。

     

  • 图  1  ZnO和γ-Fe2O3/ZnO异质结光催化剂的XRD图谱

    Figure  1.  XRD patterns of ZnO and γ-Fe2O3/ZnO heterojunction photocatalysts

    图  2  ZnO和γ-Fe2O3/ZnO异质结光催化剂的TEM图像 ((a)~(d)) 及γ-Fe2O3/ZnO-2异质结光催化剂的TEM元素图像 (e)

    Figure  2.  TEM images of ZnO and γ-Fe2O3/ZnO heterojunction photocatalysts ((a)~(d)) and TEM element mapping of γ-Fe2O3/ZnO-2 heterojunction photocatalyst (e)

    图  3  ZnO和γ-Fe2O3/ZnO异质结光催化剂的N2吸附-脱附等温曲线(a)和孔径分布(b)

    Figure  3.  N2 adsorption-desorption isotherms (a) and pore size distribution (b) of ZnO and γ-Fe2O3/ZnO heterojunction photocatalysts

    图  4  ZnO和γ-Fe2O3/ZnO异质结光催化剂的紫外-可见漫反射图谱

    Figure  4.  UV-Vis diffuse reflection spectra of ZnO and γ-Fe2O3/ZnO heterojunction photocatalysts

    图  5  ZnO和γ-Fe2O3/ZnO异质结光催化剂的暗吸附和光催化降解四环素过程

    Figure  5.  Dark adsorption and photocatalytic process of tetracycline by ZnO and γ-Fe2O3/ZnO heterojunction photocatalysts

    图  6  γ-Fe2O3/ZnO-3异质结光催化剂的光降解四环素重复使用性

    Figure  6.  Photocatalytic reusability of tetracycline by γ-Fe2O3/ZnO-3 heterojunction photocatalyst

    图  7  ZnO和γ-Fe2O3/ZnO-3异质结光催化剂光催化时的光生氢氧自由基和超氧自由基

    Figure  7.  Photo-generated hydroxyl radicals and superoxide radicals of ZnO and γ-Fe2O3/ZnO-3 heterojunction photocatalyst in process of photocatalysis

    图  8  γ-Fe2O3/ZnO异质结光催化剂光催化降解四环素的机制示意图

    Figure  8.  Mechanism schematic of photocatalytic degradation of tetracycline by γ-Fe2O3/ZnO heterojunction photocatalysts

  • [1] 陈艺兰, 肖良建, 李海燕, 等. 大豆秸杆改性TiO2光催化降解盐酸四环素研究[J]. 福建师范大学学报, 2020, 36(2):76-84.

    CHEN Yilan, XIAO Liangjian, LI Haiyan, et al. Photocatalytic-degradation performance of tetracycline hydrochloride with soybean straw modified TiO2[J]. Journal of Fujian Normal University,2020,36(2):76-84(in Chinese).
    [2] 徐向月, 马文瑾, 安博宇, 等. 四环素类抗生素在环境中的风险评估研究进展[J]. 中国畜牧兽医, 2020, 47(3):948-957.

    XU Xiangyue, MA Wenjin, AN Boyu, et al. Advances on risk assessment of tetracycline antibiotics in the environment[J]. China Animal Husbandry and Veterinary,2020,47(3):948-957(in Chinese).
    [3] 张睿宸, 杨汉培, 高照, 等. MoO(3−x)/BiOCl异质结光催化剂的制备及其可见光降解盐酸四环素的研究[J]. 环境科技, 2020, 33(1):1-6.

    ZHANG Ruichen, YANG Hanpei, GAO Zhao, et al. MoO(3−x)/BiOCl heterojunction photocatalyst: Preparation and visible-light photocatalytic performance in degradation of tetracycline hydrochloride[J]. Environmental Science and Technology,2020,33(1):1-6(in Chinese).
    [4] 吴树国, 段永正. 一种类芬顿催化剂的制备及其降解废水的应用[J]. 广州化工, 2020, 48(2):59-60.

    WU Shuguo, DUAN Yongzheng. Preparation of a kind of fenton catalyst and its application in degrading wastewater[J]. Guangzhou Chemical Industry,2020,48(2):59-60(in Chinese).
    [5] 谭万春, 谢晟盛, 彭诗梦, 等. TiO2/沸石复合光催化剂的制备及其对盐酸四环素的光降解[J]. 环境监测管理与技术, 2019, 31(6):49-52.

    TAN Wanchun, XIE Shengsheng, PENG Shimeng, et al. Photocatalytic degradation of tetracycline hydrochloride in water by TiO2/zeolite[J]. The Administration and Technique of Environmental Monitoring,2019,31(6):49-52(in Chinese).
    [6] 骆俊鹏, 孟洋洋, 凌散之, 等. ZnO光催化降解四环素的影响因素[J]. 净水技术, 2019, 38(11):106-111.

    LUO Junpeng, MENG Yangyang, LING Sanzhi, et al. Influence factors of photocatalytic degradation of tetracycline by ZnO[J]. Water Purification Technology,2019,38(11):106-111(in Chinese).
    [7] 朱正如, 张竣蛟, 姜俊超. β-Fe2O3基可见光催化材料的制备及其降解四环素研究[J]. 辽宁师范大学学报(自然科学版), 2019, 42(3):363-372.

    ZHU Zhengru, ZHANG Junjiao, JIANG Junchao. Synthesis of β-Fe2O3 based photocatalysts and study on the photocatalytic degradation on tetracycline[J]. Journal of Liaoning Normal University (Natural Science Edition),2019,42(3):363-372(in Chinese).
    [8] XIE J, ZHOU Z, LIAN Y W. Synthesis of α-Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV-Vis light irradiation[J]. Ceramics International,2015,41(2):2622-2625. doi: 10.1016/j.ceramint.2014.10.043
    [9] JAYALAKSHMI M, BALASUBRAMANIAN K. Solution combustion synthesis of Fe2O3/C, Fe2O3-SnO2/C, Fe2O3-ZnO/C composites and their electrochemical characterization in non-aqueous electrolyte for supercapacitor application[J]. International Journal of Electrochemical Science,2009,4(6):878-886.
    [10] HUANG K J, MA S W, YUAN F L. High ethanol gas sensitivity of nano γ-Fe2O3/ZnO double-layer films prepared by the screen printing technology and the hydrothermal method[J]. Applied Mechanics and Materials,2012,151:350-354. doi: 10.4028/www.scientific.net/AMM.151.350
    [11] 张宇晴, 曾雪玉, 于凯, 等. 水热合成具有分级结构的钨酸铋纳米花及其光催化降解四环素性能[J]. 无机化学学报, 2019, 35(11):2185-2191.

    ZHANG Yuqing, ZENG Xueyu, YU Kai, et al. Hydrothermal synthesis of hierarchically structured flower-like bismuth tungstate for photocatalytic tetracycline degradation[J]. Chinese Journal of Inorganic Chemistry,2019,35(11):2185-2191(in Chinese).
    [12] SHAH P, SIDDHAPARA K S, SHAH D V, et al. Synthesis and photocatalytic application of α-Fe2O3/ZnO fine particles prepared by two-step chemical method[J]. Carbon Science and Technology,2013,5(2):265-268.
    [13] 张帆, 单国庆, 柴凤兰, 等. 酞菁类复合催化剂制备及光催化降解四环素性能[J]. 工业催化, 2020, 28(1):64-69.

    ZHANG Fan, SHAN Guoqing, CHAI Fenglan, et al. Preparation and photocatalytic degradation performance of phthalocyanine composited catalyst for tetracycline[J]. Industrial Catalysis,2020,28(1):64-69(in Chinese).
    [14] 滕敏, 姜晓娜, 胡梦琴, 等. 生物质碳点敏化超薄g-C3N4的表征及其对四环素的光催化降解[J]. 东北林业大学学报, 2020, 48(2):98-103.

    TENG Min, JIANG Xiaona, HU Mengqin, et al. Photocatalytic degradation of tetracycline by carbon point sensitized ultrathin g-C3N4[J]. Journal of Northeast Forestry University,2020,48(2):98-103(in Chinese).
    [15] WU P, DU N, ZHANG H. Functionalization of ZnO nanorods with γ-Fe2O3 nanoparticles: Layer-by-layer synthesis, optical and magnetic properties[J]. Materials Chemistry & Physics,2010,124(2):908-911.
    [16] HONG J S, WATANABE T, WAGATA H, et al. Fabrication of heterostructured α-Fe2O3/ZnO film for photoelectrode by aqueous solution process[J]. Journal of the Japan Society of Powder & Powder Metallurgy,2014,61(s1):324-326.
    [17] ZHU D, FU Y, ZANG W, et al. Room-temperature self-powered ethanol sensor based on the piezo-surface coupling effect of heterostructured α-Fe2O3/ZnO nanowires[J]. Materials Letters,2016,166:288-291. doi: 10.1016/j.matlet.2015.12.106
    [18] QU J, LUO C, CONG Q. Synthesis of carbon nanotube/ZnO nanocomposites using absorbent cotton and their photocatalytic activity[J]. Micro & Nano Letters,2012,7(10):1064-1068.
    [19] ZUO D, ZHANG L, TONG H X, et al. Preparation and application of electro-catalytic material Fe2O3-ZnO/C[J]. Journal of Central South University,2013,20(6):1496-1501. doi: 10.1007/s11771-013-1640-6
    [20] FU R P, WANG W, HAN R J. Preparation and characterization of γ-Fe2O3/ZnO composite particles[J]. Materials Letters,2008,62(25):4066-4068. doi: 10.1016/j.matlet.2008.05.006
    [21] BENNETT S W, KELLER A A. Comparative photoactivity of CeO2, γ-Fe2O3, TiO2 and ZnO in various aqueous systems[J]. Applied Catalysis B: Environmental,2011,102(3-4):600-607. doi: 10.1016/j.apcatb.2010.12.045
    [22] LIU Y, YU L, HU Y, et al. A magnetically separable photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity[J]. Nanoscale,2012,4(1):183-187. doi: 10.1039/C1NR11114K
    [23] ADAK D, SHOW B, MONDAL A, et al. ZnO/γ-Fe2O3 charge transfer interface in zinc-iron oxide hollow cages towards efficient photodegradation of industrial dyes and methanol electrooxidation[J]. Journal of Catalysis,2017,355:63-72. doi: 10.1016/j.jcat.2017.09.003
    [24] AHMADI M, MOTLAGH H R, JAAFARZADEH N, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite[J]. Journal of Environmental Management,2017,186:55-63.
    [25] MAO W, WANG T, WANG H, et al. Novel Bi2WO6 loaded g-C3N4 composites with enhanced photocatalytic degradation of dye and pharmaceutical wastewater under visible light irradiation[J]. Journal of Materials Science Materials in Electronics,2018,29(17):15174-15182. doi: 10.1007/s10854-018-9659-y
    [26] QAMAR M T, ASLAM M, ISMAIL I M I, et al. The assessment of the photocatalytic activity of magnetically retrievable ZnO coated γ-Fe2O3 in sunlight exposure[J]. Chemical Engineering Journal,2016,283:656-667. doi: 10.1016/j.cej.2015.08.002
    [27] KATOCH A, CHOI S W, SUN G J, et al. Ptnanoparticle-decorated ZnO nanowire sensors for detecting benzene at room temperature[J]. Journal of Nanoscience and Nanotechnology,2013,13(10):7097-7099. doi: 10.1166/jnn.2013.7695
  • 加载中
图(8)
计量
  • 文章访问数:  1549
  • HTML全文浏览量:  511
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-18
  • 录用日期:  2020-08-10
  • 网络出版日期:  2020-08-26
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回