留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多指标控制的聚氨酯阻尼材料动态力学性能稳健性分析

苏毅 李婷 李爱群

苏毅, 李婷, 李爱群. 基于多指标控制的聚氨酯阻尼材料动态力学性能稳健性分析[J]. 复合材料学报, 2021, 38(6): 1859-1869. doi: 10.13801/j.cnki.fhclxb.20200825.001
引用本文: 苏毅, 李婷, 李爱群. 基于多指标控制的聚氨酯阻尼材料动态力学性能稳健性分析[J]. 复合材料学报, 2021, 38(6): 1859-1869. doi: 10.13801/j.cnki.fhclxb.20200825.001
SU Yi, LI Ting, LI Aiqun. Robustness analysis of dynamic properties of polyurethane damping materials based on multi-index control[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1859-1869. doi: 10.13801/j.cnki.fhclxb.20200825.001
Citation: SU Yi, LI Ting, LI Aiqun. Robustness analysis of dynamic properties of polyurethane damping materials based on multi-index control[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1859-1869. doi: 10.13801/j.cnki.fhclxb.20200825.001

基于多指标控制的聚氨酯阻尼材料动态力学性能稳健性分析

doi: 10.13801/j.cnki.fhclxb.20200825.001
基金项目: 国家自然科学基金(51438002;51278104)
详细信息
    通讯作者:

    苏毅,博士,副教授,研究方向为建筑结构抗震与减震、现代竹木结构  E-mail:suyi@njfu.edu.cn

  • 中图分类号: TB332

Robustness analysis of dynamic properties of polyurethane damping materials based on multi-index control

  • 摘要: 强震或强风下,建筑结构中的隔震或消能装置受力大、变形大,这就要求阻尼材料的阻尼系数高,适用温度与室外环境匹配,具有大阻尼温域。目前,聚氨酯阻尼材料难以同时满足上述诸多指标性能,因而无法广泛应用于建筑结构减震领域。本文选择了玻璃纤维、石墨烯、四脚状氧化锌晶须及受阻酚小分子四种增强填料,以同时提高聚氨酯材料的阻尼性能、力学性能并改变其温度特性。通过正交试验设计了不同用量的聚氨酯复合阻尼材料,并进行基本物理力学性能和动态力学性能试验。根据动态热机械分析(DMA)试验结果,利用田口法进行损耗因子峰值tanδmax、大阻尼温域ΔT0.5和玻璃化转变温度Tg三个动态力学性能指标的信噪比分析和方差分析,以获得各指标的稳健性。依据各指标的重要性进行权重赋值,由层次分析法(AHP)构建多指标赋权评价方法,得到优化方案。并通过验证试验可知,优化后聚氨酯材料tanδmax为1.24,ΔT0.5为57℃,Tg为21.8℃,与初始组相比,其tanδmax提高了16.98%,ΔT0.5拓宽了46.91%。

     

  • 图  1  聚氨酯阻尼材料损耗因子随温度的变化曲线

    Figure  1.  Curve of loss factor with temperature of polyurethane damping materials

    图  2  聚氨酯阻尼材料的试验指标结果

    Figure  2.  Results of test indicators of polyurethane damping materials

    No. 0—Sample of matrix material

    图  3  聚氨酯阻尼材料的SEM图像

    Figure  3.  SEM images of polyurethane damping materials

    图  4  石墨烯改性聚氨酯阻尼材料的SEM图像

    Figure  4.  SEM images of polyurethane damping materials modified by graphene

    图  5  聚氨酯阻尼材料tanδmax信噪比均数分析

    Figure  5.  Analysis of tanδmax signal-to-noise ratio means of polyurethane damping materials

    图  6  聚氨酯阻尼材料ΔT0.5信噪比均数分析

    Figure  6.  Analysis of ΔT0.5 signal-to-noise ratio means of polyurethane damping materials

    图  7  聚氨酯阻尼材料Tg信噪比均数分析

    Figure  7.  Analysis of Tg signal-to-noise ratio means of polyurethane damping materials

    图  8  初始组和优化组的DMA曲线

    Figure  8.  DMA curves of initial and optimization groups

    表  1  因素水平

    Table  1.   Factor level

    Experimental
    factor
    FactorContent
    Level 1Level 2Level 3
    GF A 10 12 15
    T-ZnOw B 0.3 0.5 0.7
    Graphene C 0.1 0.2 0.3
    AO-80 D 10 14 18
    Notes: Dosage in the table is 100 phr of polyurethane-epoxy; GF—Glass fiber; T-ZnOw—Tetra-needle like ZnO whiskers.
    下载: 导出CSV

    表  2  高阻尼聚氨酯材料$ {\rm{L}}_{9}\left({3}^{4}\right) $正交表

    Table  2.   $ {\rm{L}}_{9}\left({3}^{4}\right) $ orthogonal table of high damping polyurethane materials

    NumberSpecimenABCD
    1 A1B1C1D1 10 0.3 0.1 10
    2 A1B2C2D2 10 0.5 0.2 14
    3 A1B3C3D3 10 0.7 0.3 18
    4 A2B1C2D3 12 0.3 0.2 18
    5 A2B2C3D1 12 0.5 0.3 10
    6 A2B3C1D2 12 0.7 0.1 14
    7 A3B1C3D2 15 0.3 0.3 14
    8 A3B2C1D3 15 0.5 0.1 18
    9 A3B3C2D1 15 0.7 0.2 10
    Notes: A, B, C and D—Factors; 1, 2 and 3—Factor level in Table 1.
    下载: 导出CSV

    表  3  聚氨酯阻尼材料样品的基本物理力学性能指标

    Table  3.   Basic physical mechanical properties of polyurethane damping material specimens

    Sample numberHardness[18]/HATensile strength[19]/MPaElongation at break[19]/%Compression set[21]/%Tear strength[20]/MPa
    1 71 13 700 13 40
    2 74 20 650 6 51
    3 74 16 700 17 39
    4 74 20 730 16 40
    5 67 15 655 14 40
    6 66 13 650 13 29
    7 68 14 670 27 32
    8 67 15 690 35 39
    9 71 18 655 14 37
    下载: 导出CSV

    表  4  聚氨酯阻尼材料DMA试验结果及其信噪比(S/N)

    Table  4.   Results and signal-to-noise ratio (S/N) of DMA test for polyurethane damping materials

    NumberSpecimentanδmaxΔT0.5Tg
    ValueS/N/dBValue/℃S/N/dBValue /℃S/N/dB
    1 A1B1C1D1 0.87 −1.21 30 29.54 11.8 18.3
    2 A1B2C2D2 0.9 −0.92 38.2 31.64 18 6.0
    3 A1B3C3D3 1.04 0.34 42 32.46 18.9 0.8
    4 A2B1C2D3 1.25 1.94 52.8 34.45 22 6.0
    5 A2B2C3D1 1.06 0.51 40 32.04 21.2 1.6
    6 A2B3C1D2 1.06 0.51 38.8 31.78 18.9 0.8
    7 A3B1C3D2 1.1 0.83 41.4 32.34 21.1 0.8
    8 A3B2C1D3 1.14 1.14 39.7 31.98 22 6.0
    9 A3B3C2D1 1 0 36.2 31.17 16 12.0
    Average 0.35 32.03 5.8
    下载: 导出CSV

    表  5  聚氨酯阻尼材料损耗因子峰值tanδmax信噪比

    Table  5.   Noise-signal ratio for loss peak value tanδmax of polyurethane damping materials

    NameLevel 1/dBLevel 2/dBLevel 3/dBDIF
    A:GF −0.59 0.98 0.66 1.57
    B:T-ZnOw 0.52 0.24 0.28 0.28
    C:Graphene 0.14 0.34 0.56 0.42
    D:AO-80 −0.23 0.14 1.14 1.37
    Average(S/N)=0.35
    Notes: DIF—Difference between the maximum and minimum signal-to-noise ratio; GF—Glass fiber.
    下载: 导出CSV

    表  6  聚氨酯阻尼材料tanδmax信噪比方差分析

    Table  6.   Variance analysis of signal-to-noise ratio of tanδmax of polyurethane damping materials

    NameFreedomSum of squareVarianceF
    A 2 1.39 0.70 21.22
    B 2 0.05 0.02 0.69
    C 2 0.09 0.04 1.31
    D 2 1 0.50 15.27
    Error 0 0
    Sum 8 2.52
    (Error) (4) (0.13) (0.03)
    Notes: Meanings of the values in the table are given in Ref. [12]; F—Ratio of the two mean square (effect term/error term).
    下载: 导出CSV

    表  7  聚氨酯阻尼材料大阻尼温域ΔT0.5因素信噪比

    Table  7.   Noise-signal ratio for damping temperature range ΔT0.5 of polyurethane damping materials

    NameLevel 1/dBLevel 2/dBLevel 3/dBDIF
    A 31.22 32.76 31.83 1.54
    B 32.11 31.89 31.81 0.3
    C 31.10 32.42 32.28 1.32
    D 30.92 31.92 32.96 2.04
    Average(S/N)=32.03
    下载: 导出CSV

    表  8  聚氨酯阻尼材料ΔT0.5信噪比方差分析

    Table  8.   Variance analysis of signal-to-noise ratio of ΔT0.5 of polyurethane damping materials

    NameFreedomSum of squareVarianceF
    A 2 1.203 0.60 24.90
    B 2 0.048 0.02 1.00
    C 2 1.052 0.53 21.77
    D 2 2.081 1.04 43.09
    Error 0 0
    Sum 8 4.38
    (Error) (2) (0.048) (0.02)
    下载: 导出CSV

    表  9  聚氨酯阻尼材料玻璃化转变温度Tg因素信噪比

    Table  9.   Noise-signal ratio for glass transition temperature Tg of polyurethane damping materials

    NameLevel 1/dBLevel2 /dBLevel 3/dBDIF
    A 8.37 2.81 6.3 5.56
    B 8.37 4.54 4.57 3.87
    C 8.37 8.03 1.08 7.3
    D 10.63 2.56 4.29 6.34
    Average(S/N)=5.83
    下载: 导出CSV

    表  10  聚氨酯阻尼材料Tg信噪比方差分析

    Table  10.   Variance analysis of signal-to-noise ratio of Tg of polyurethane damping materials

    NameFreedomSum of squareVarianceF
    A 2 15.79 7.90 1.63
    B 2 9.7 4.85 1.00
    C 2 33.85 16.93 3.49
    D 2 36.1 18.1 3.72
    Error 0 0
    Sum 8 95.44
    (Error) (2) (9.7) (4.85)
    下载: 导出CSV

    表  11  AHP赋权法综合评估结果

    Table  11.   Comprehensive evaluation results of AHP weighting method

    FactortanδmaxΔT0.5/℃Tg/℃Weight coefficient
    Criteria weight0.1430.2860.571
    Scheme A2B1C3D3 0.571 0.286 0.143 0.347
    A2B1C2D3 0.286 0.571 0.286 0.449
    A1B1C1D1 0.143 0.143 0.571 0.204
    Notes: Meanings of the values in the table are given in Ref. [12]; AHP—Analytic Hierarchy Process.
    下载: 导出CSV

    表  12  高阻尼聚氨酯材料阻尼性能试验验证

    Table  12.   Experimental verification of damping performance of polyurethane damping materials

    Quality characteristic
    target
    Initial
    group
    Optimization groupImprovement/
    dB
    Improvement
    rate/%
    PredictedMeasured
    tanδmax 1.06 1.24 0.18 16.98
    S/N of tanδmax 0.51 2.01 1.87 1.36 266.67
    ΔT0.5/℃ 38.8 53 14.2 36.60
    S/N of ΔT0.5 31.78 34.96 34.48 2.7 8.50
    Tg/℃ 18.9 21.8 −0.7 −3.70
    S/N of Tg 0.83 6.02 5.11
    下载: 导出CSV
  • [1] 张志, 许勇. 岳耀, 等. AO-60/丁腈橡胶-环氧化天然橡胶-天然橡胶复合材料的制备及其阻尼性能[J]. 复合材料学报, 2019, 36(8):1796-1803.

    ZHANG Zhi, XU Yong, YUE Yao, et al. Preparation and damping properties of hindered phenol AO-80/nitrile butadiene rubber-epoxidized natural rubber-natural rubber composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1796-1803(in Chinese).
    [2] 许俊红, 李爱群, 苏毅, 等. 开环式聚降冰片烯共混黏弹性阻尼材料的动态阻尼力学热分析[J]. 高分子材料科学与工程, 2015, 31(7):51-56.

    XU Junhong, LI Aiqun, SU Yi, et al. Dynamic damping mechanical analysis of viscolastic damping material mixed norsorex by ring-opening metathesis polymerization[J]. Polymer Materials Science Engineering,2015,31(7):51-56(in Chinese).
    [3] WANG Yueqiong, LIAO Lusheng, LIN Hongtu, et al. Damping properties of natural rubber/epoxidized natural rubber composites with different fillers[J]. Advances in Engineering Research,2018,120:772-775.
    [4] SHI X, LI Q, FU G, et al. The effects of a polyol on the damping properties of EVM/PLA blends[J]. Polymer Testing,2015,33:1-6.
    [5] 李翰模, 杨一林, 李志鹏, 等. 基于网络结构设计制备宽温域高阻尼聚氨酯弹性体[J]. 高分子材料科学与工程, 2017, 33(6):146-151.

    LI Hanmo, YANG Yilin, LI Zhipeng, et al. Preparation of high damping polyurethane with wide temperature range based on network structure designing[J]. Polymer Materials Science & Engineering,2017,33(6):146-151(in Chinese).
    [6] MOUSA A. Thermal properties of carboxylated nitrile rubber/nylon-12 composites-filled lignocellulose[J]. Journal of Thermoplastic Composite Materials,2014,27(2):167-179. doi: 10.1177/0892705712475017
    [7] LEE K S, CHOI J I, KIM S K, et al. Damping and mechanical properties of composite composed of polyurethane matrix and preplaced aggregates[J]. Construction and Building Materials,2017,3(233):68-75.
    [8] KHIMI S R, PICKRING K L. The effect of silane coupling agent on the dynamic mechanical properties of iron sand/natural rubber magnetorheological elastomers[J]. Composites Part B: Engineering,2016,90:115-125. doi: 10.1016/j.compositesb.2015.11.042
    [9] LEE D J, KIM M K, WALSH J, et al. Experimental characterization of temperature dependent dynamic properties of glass fiber reinforced polyurethane foams[J]. Polymer Texting,2019,74:30-38. doi: 10.1016/j.polymertesting.2018.12.013
    [10] ATIQAH A, JAWAID M, SAPUAN S M, et al. Thermal properties of sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites[J]. Composite Structures,2018,202:954-958. doi: 10.1016/j.compstruct.2018.05.009
    [11] LIU Gang, TANG Shawei, REN Wenchao, et al. Effect of thermal cycling on the damping behavior in alumina borate whisker with and without Bi2O3 coating reinforced pure aluminum composites[J]. Materials and Design,2014,3(34):244-249.
    [12] ADEYINKA Idowu, PRANJAL Nautiyal, LUIZA Fontoura, et al. Multi-scale damping of graphene foam-based polyurethane composites synthesized by electrostatic spraying[J]. Polymer Composites,2019,40:1862-1870. doi: 10.1002/pc.24948
    [13] HUNG Puiyan, KINTAK Lau, KUN Qiao, et al. Property enhancement of CFRP composites with different graphene oxide employment methods at a cryogenic temperature[J]. Composites Part A: Applied Science & Manufacturing,2019,120:56-63. doi: 10.1016/j.compositesa.2019.02.012
    [14] YANG Dawei, ZHAO Xiuying, CHAN Tung, et al. Investigation of the damping properties of hindered phenol AO-80/polyacrylate hybrids using molecular dynamics simulations in combination with experimental methods[J]. Journal of Materials Science,2016,51(12):5760-5774. doi: 10.1007/s10853-016-9878-7
    [15] ZHU H, HU Y M, ZHU W D, et al. Multi-objective design optimization of an engine accessory drive system with a robustness analysis[J]. Applied Mathematical Modelling,2020,77:1564-1581. doi: 10.1016/j.apm.2019.09.016
    [16] CHAN KY, YIU C K F, NORDHOLM S. Microphone configuration for beamformer design using the Taguchi method[J]. Measurement,2017,10(25):58-66.
    [17] 王卫红, 王园. 基于PCA-AHP-IE的多指标评价模型研究与应用[J]. 浙江工业大学学报, 2019, 47(6):591-596.

    WANG Weihong, WANG Yuan. Research and application of multi-criteria evaluation model based on PCA-AHP-IE[J]. Journal of Zhejiang University of Technology,2019,47(6):591-596(in Chinese).
    [18] 中华人民共和国国家质量监督检验检疫总局. 硫化橡胶或热塑性橡胶压入硬度试验方法第1部分: 邵氏硬度计法: GB/T 531.1—2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Rubber, vulcanized or thermoplastic-Determination of indentation hardness-Part 1: Duromerer method (Shore hardness): GB/T 531.1—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [19] 中华人民共和国国家质量监督检验检疫总局. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [20] 中华人民共和国国家质量监督检验检疫总局. 硫化橡胶或热塑性橡胶撕裂强度的测定: 裤形、直角形和新月形试样: GB/T 529.1—2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Determination of tear strength (Trouser, angle and crescent test pieces): GB/T 529.1—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [21] 中华人民共和国国家质量监督检验检疫总局. 硫化橡胶或热塑性橡胶 压缩永久变形的测定 第1部分: 在常温及高温条件下: GB/T 7759.1—2015[S]. 北京: 中国标准出版社, 2015.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Determination of compression set-Part 1: At ambient or elevated temperatures: GB/T 7759.1—2015[S]. Beijing: Standards Press of China, 2015(in Chinese).
    [22] 中华人民共和国国家质量监督检验检疫总局. 《硫化橡胶或热塑性橡胶动态性能的测定 第1部分: 通则》: GB/T 9870.1—2006[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Determination of dynamic properties-Part 1: General guidance: GB/T 9870.1—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
    [23] 中华人民共和国国家质量监督检验检疫总局. 《橡胶支座第3部分: 建筑隔震橡胶支座》: GB 20688.3—2006[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Rubber bearing-Part 3: Elastomeric seismic-Protection isolators for buildings: GB 20688.3—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
  • 加载中
图(8) / 表(12)
计量
  • 文章访问数:  1148
  • HTML全文浏览量:  401
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-11
  • 录用日期:  2020-08-13
  • 网络出版日期:  2020-08-25
  • 刊出日期:  2021-06-23

目录

    /

    返回文章
    返回