Interlaminar toughening of glass fiber/epoxy vinyl ester resin composite and its low-velocity impact properties at low temperature
-
摘要: 采用真空辅助成型工艺(VARI)制备了四种无纺布(聚酰胺(PA)、聚氨酯弹性体橡胶(TPU)、乙烯-醋酸乙烯共聚物(EVA)、共聚酯(PEs))层间改性的玻璃纤维/环氧乙烯基酯树脂(GF/EVER)复合材料层合板。在温度为20℃下进行落锤冲击实验,对比分析了不同层间改性的GF/EVER复合材料层合板的低速冲击响应特性和抗冲击性能;利用超声C扫描和SEM分析了其冲击损伤机制。通过对复合材料层合板的冲击损伤面积、凹坑深度、最大接触力、冲击后剩余压缩强度(CAI)值的对比分析可知,经TPU和PEs无纺布层间改性的GF/EVER复合材料抗冲击性能较佳。不同的无纺布和基体树脂生成的界面相与纤维的结合程度不尽相同。层间改性的GF/EVER复合材料的冲击损伤机制为冲击正面表层基体树脂的开裂,其内部的分层和冲击背面的分层劈裂或纤维断裂;同时,进一步研究了经TPU和PEs改性的GF/EVER复合材料在低温下(−100℃和−45℃)的低速冲击性能,结果表明,随着温度的降低,GF/EVER复合材料的冲击损伤面积随之增大,CAI值随之减小,这可能是GF/EVER复合材料在低温下层间残余热应力和基体树脂脆化效应综合作用的结果。Abstract: Four kinds of glass fiber/epoxy vinyl ester resin (GF/EVER) composite laminates interlayer toughened by polyamide (PA), polyurethane (TPU), vinyl ester copolymer (EVA) and co-polyester (PEs) nonwoven fabrics were prepared by vacuum assisted resin infusion (VARI) process. The drop hammer impact test was carried out at temperature of 20℃, and the low-velocity impact response and impact resistance of the different GF/EVER composite laminates were compared and analyzed. The fracture mechanism was further studied by means of ultrasonic C-scan and SEM. The results indicate that the GF/EVER composite laminates modified by TPU and PEs nonwoven fabrics have better impact resistance through the comparison of impact damage area, dent depth, maximum contact force and residual compression strength (CAI). The interface phase and fiber binding degree of different non-woven fabrics and matrix resins are different. The impact damage mechanism of GF/EVER composite laminates is the cracking of matrix resin on the surface of impact surface, the delamination inside the composite laminate and the delamination cleavage or fiber fracture on the back of impact surface. Meanwhile, the low-velocity impact performance of GF/EVER composite laminates modified by TPU and PEs nonwoven fabrics was further studied under impact test at low temperature (−100℃, −45℃). The results show that the impact damage area will be increased and CAI will be decreased with the decrease of temperature. This may be the result of the combined action of the interlaminar residual thermal stress of GF/EVER composites and the embrittlement effect of matrix resin at low temperature.
-
表 1 玻璃纤维/环氧乙烯基酯树脂(GF/EVER)复合材料的编号、铺层方式、层合板厚度、纤维体积含量及无纺布的含量
Table 1. Layer configuration, thickness, fiber volume fraction and mass fraction of nonwoven fabrics of glass fiber/epoxy vinyl ester resin (GF/EVER) composite
Sample Layer configuration T/mm Vf/vol% Wnf/wt% GF/EVER [0/90]4S 2.79 51.1 0 GF/EVER-PA [0/PA/90]4S 4.01 47.8 1.02 GF/EVER-TPU [0/TPU/90]4S 3.96 49.7 1.04 GF/EVER-EVA [0/EVA/90]4S 4.20 46.3 1.33 GF/EVER-PEs [0/PEs/90]4S 3.95 48.4 1.00 Notes: T—Thickness of laminates; Vf—Fiber volume fraction; Wnf—Mass fraction of nonwoven fabrics in resin system; PA—Polyamide; TPU—Polyurethane; EVA— Vinyl ester copolymer; PEs—Co-polyester. -
[1] 宋传江, 王虎. 玻璃纤维增强复合材料工程化应用进展[J]. 中国塑料, 2015, 29(3):9-15.SONG Chuanjiang, WANG Hu. Engineering application research of glass fiber reinforced composite materials[J]. China Plastics,2015,29(3):9-15(in Chinese). [2] 张宏军, 周晓东, 戴干策, 等. 玻璃纤维增强乙烯基酯树脂复合材料的增韧[J]. 高分子材料科学与工程, 2005, 21(3):21-25.ZHANG Hongjun, ZHOU Xiaodong, DAI Gance, et al. Toughening glass fiber reinforced vinyl ester reisin composite[J]. Polymer Materials Science and Engineerin,2005,21(3):21-25(in Chinese). [3] 徐颖, 温卫东, 崔海坡. 复合材料层合板低速冲击逐渐累积损伤预测方法[J]. 材料科学与工程学报, 2006, 24(1):77-81.XU Ying, WEN Weidong, CUI Haipo. A cumulative damage prediction method of low-velocity impacts on laminated composites[J]. Journal of Materials Science & Engineering,2006,24(1):77-81(in Chinese). [4] HE Y, LI Q, KUILA T, et al. Micro-crack behavior of carbon fiber reinforced thermoplastic modified epoxy composites for cryogenic applications[J]. Composites Part B: Engineering,2013,44(1):533-539. doi: 10.1016/j.compositesb.2012.03.014 [5] AKANGAH P, LINGAIAH S, SHIVAKUMAR K. Effect of nylon-66 nano-fiber interleaving on impact damage resistance of epoxy/carbon fiber composite laminates[J]. Composite Structures,2010,92(6):1432-1439. doi: 10.1016/j.compstruct.2009.11.009 [6] DAELEMANS L. Interlaminar toughening of composite laminates by electrospun nanofibrous interleaves[D]. Ghent: Ghent University, 2017. [7] BOYD S E, BOGETTI T A, STANISZEWSKI J M, et al. Enhanced delamination resistance of thick-section glass-epoxy composite laminates using compliant thermoplastic polyurethane interlayers[J]. Composite Structures,2018,189:184-191. [8] 姚佳伟, 刘梦瑶, 牛一凡. PEK-C膜层间增韧碳纤维/环氧树脂复合材料的力学性能[J]. 复合材料学报, 2019, 36(5):1083-1091.YAO Jiawei, LIU Mengyao, NIU Yifan. Mechanical properties of PEK-C interlayer toughened carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2019,36(5):1083-1091(in Chinese). [9] SAZ-OROZCO B D, RAY D, STANLEY W F, et al. Effect of thermoplastic veils on interlaminar fracture toughness of a glass fiber/vinyl ester composite[J]. Polymer Composites,2015,38(11):1-8. [10] KUWATA M, HOGG P J. Interlaminar toughness of interleaved CFRP using non-woven veils Part 1: Mode-Ⅰ testing[J]. Composites Part A: Applied Science and Manufacturing,2011,42(10):1551-1559. doi: 10.1016/j.compositesa.2011.07.016 [11] NASH N H, YOUNG T M, MCGRAIL P T, et al. Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fibre reinforced thermosetting composite: A review[J]. Materials & Design,2015,85(15):582-597. [12] KUWATA M, HOGG P J. Interlaminar toughness of interleaved CFRP using non-woven veils Part 2: Mode-Ⅱ testing[J]. Composites Part A: Applied Science and Manufacturing,2011,42(10):1560-1570. [13] 马鹏, 李进, 康少付, 等. 不同无纺布对玻纤/乙烯基酯复合材料力学性能的影响[J]. 复合材料科学与工程, 2020(5):69-73.MA Peng, LI Jin, KANG Shaofu, et al. Effect of different non-woven fabrics on mechanical properties of glass fiber/vinyl ester composites[J]. Composites Science and Engineering,2020(5):69-73(in Chinese). [14] IBEKWE S I, MENSAH P F, LI G, et al. Impact and post impact response of laminated beams at low temperatures[J]. Composite Structures,2007,79(1):12-17. doi: 10.1016/j.compstruct.2005.11.025 [15] ICTEN B M, ATAS C, AKATAS M, et al. Low temperature effect on impact response of quasi-isotropic glass/epoxy laminated plates[J]. Composite Structures,2009,91(3):318-323. doi: 10.1016/j.compstruct.2009.05.010 [16] RIO T G, ZAERA R, BARBERO E, et al. Damage in CFRPs due to low velocity impact at low temperature[J]. Composites Part B: Engineering,2005,36(1):41-50. doi: 10.1016/j.compositesb.2004.04.003 [17] ASTM International. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137M—17[S]. West Conshohocken: ASTM International, 2017. [18] CARTIÉ D D R, IRVING P E. Effect of resin and fibre properties on impact and compression after impact performance of CFRP[J]. Composites Part A: Applied Science and Manufacturing,2002,33(4):483-493. doi: 10.1016/S1359-835X(01)00141-5 [19] REDDY T S, REDDY P R S, MASHU V. Low velocity impact studies of E-glass/epoxy composite laminates at different thicknesses and temperatures[J]. Defence Technology,2019,15(6):897-904. doi: 10.1016/j.dt.2019.02.003 [20] KWON S Y, SANKAR B V. Indentation flexure and low velocity impact damage in graphite epoxy laminates[J]. Journal of Composites Technology and Research,2010,15(2):101-111. [21] 沈真, 张子龙, 王进, 等. 复合材料损伤阻抗和损伤容限的性能表征[J]. 复合材料学报, 2004, 21(5):140-145.SHEN Zhen, ZHANG Zilong, WANG Jin, et al. Characterization of damage resistance and damage tolerance behavior of composite materials[J]. Acta Materiae Compositae Sinica,2004,21(5):140-145(in Chinese). [22] NOR A F M, SULTAN M T H, JAWAID M, et al. Analyzing impact properties of CNT filled bam-boo/glass hybrid nano-composites through drop-weight impact testing, UWPI and compression-after-impact behavior[J]. Composites Part B: Engineering,2019,168:166-174. doi: 10.1016/j.compositesb.2018.12.061 [23] SHEN Y, JIANG B, LI Y, et al. Low velocity impact response and energy absorption behavior on glass fibre reinforced epoxy composites[J]. Science China Technological Sciences,2017,60(9):1339-1346. doi: 10.1007/s11431-016-9061-3 [24] 董慧民, 安学锋, 益小苏, 等. 纤维增强聚合物基复合材料低速冲击研究进展[J]. 材料工程, 2015, 43(5):89-100.DONG Huimin, AN Xuefeng, YI Xiaosu, et al. Progress in research on low velocity impact properties of fiber reinforced polymer matrix composite[J]. Journal of Materials Engineering,2015,43(5):89-100(in Chinese). [25] AKTAS M, ATAS C, ICTEN B M, et al. An experimental investigation of the impact response of composite laminates[J]. Composite Structures,2009,87(4):307-313. doi: 10.1016/j.compstruct.2008.02.003 [26] JOSHI S P, SUN C T. Impact induced fracture in a laminated composite[J]. Journal of Composite Materials,1985,19(1):51-66. doi: 10.1177/002199838501900104 [27] 张朋, 刘刚, 胡晓兰, 等. 结构化增韧层增韧RTM复合材料性能[J]. 复合材料学报, 2012, 29(4):1-9.ZHANG Peng, LIU Gang, HU Xiaolan, et al. Properties of toughened RTM composites by structural toughening layer[J]. Acta Materiae Compositae Sinica,2012,29(4):1-9(in Chinese). [28] 杨志磊. 环氧/热塑性丙烯酸树脂共混体系反应诱导相分离的研究[D]. 镇江: 江苏科技大学, 2013.YANG Zhilei. Research of reaction induced phase separation in epoxy systems modified by thermoplastic acrylic resin[D]. Zhenjiang: Jiangsu University of Science and Technology, 2013(in Chinese). [29] 张秀娟, 益小苏, 许元泽. 不同热塑性树脂改性热固性树脂体系反应[J]. 高分子学报, 2007(8):725-730.ZHANG Xiujuan, YI Xiaosu, XU Yuanze. The time/temperature relationship during phase separation of different thermoplastic modified thermosetting systems[J]. Acta Polymerica Sinica,2007(8):725-730(in Chinese). [30] 刘小云, 余英丰, 甘文君, 等. 热塑性树脂改性热固性树脂体系固化反应诱导相分离研究进展[J]. 材料导报, 2007, 21(4):34-40, 55.LIU Xiaoyun, YU Yingfeng, GAN Wenjun, et al. The progress in the research on polymerization-induced phase separation of thermoplastic resin modified thermoset resin[J]. Materials Review,2007,21(4):34-40, 55(in Chinese). [31] ICTEN B M. Low temperature effect on single and repeated impact behavior of woven glass-epoxy composite plates[J]. Journal of Composite Materials,2005,49(10):1171-1178. [32] SALEHI-KHOJIN A, BASHIRZADEH R, MAHINFALAH M, et al. The role of temperature on impact properties of Kevlar/fiberglass composite laminates[J]. Composites Part B: Engineering,2006,37(78):593-602. [33] 江先龙, 顾浩, 钱永嘉, 等. 乙烯基酯树脂低温特性研究[J]. 热固性树脂, 2013, 28(6):49-51.JIANG Xianlong, GU Hao, QIAN Yongjia, et al. Study on the properties of vinyl ester resin at low temperature[J]. Thermosetting Resin,2013,28(6):49-51(in Chinese).