留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阻燃预警智能涂层的研究进展

张帅 张隐 潘明珠

张帅, 张隐, 潘明珠. 阻燃预警智能涂层的研究进展[J]. 复合材料学报, 2021, 38(1): 55-66. doi: 10.13801/j.cnki.fhclxb.20200813.001
引用本文: 张帅, 张隐, 潘明珠. 阻燃预警智能涂层的研究进展[J]. 复合材料学报, 2021, 38(1): 55-66. doi: 10.13801/j.cnki.fhclxb.20200813.001
ZHANG Shuai, ZHANG Yin, PAN Mingzhu. Research progress of intelligent flame retardant coating with fire-warning capabilities[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 55-66. doi: 10.13801/j.cnki.fhclxb.20200813.001
Citation: ZHANG Shuai, ZHANG Yin, PAN Mingzhu. Research progress of intelligent flame retardant coating with fire-warning capabilities[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 55-66. doi: 10.13801/j.cnki.fhclxb.20200813.001

阻燃预警智能涂层的研究进展

doi: 10.13801/j.cnki.fhclxb.20200813.001
基金项目: 国家自然科学基金(31670556);江苏省青蓝工程(2018);南京林业大学杰出青年基金(NLJQ2015-02)
详细信息
    通讯作者:

    潘明珠,博士,教授,研究方向为生物质功能材料 E-mail:mzpan@njfu.edu.cn

  • 中图分类号: TB381

Research progress of intelligent flame retardant coating with fire-warning capabilities

  • 摘要: 随着城市化进展的加快和高层建筑的增加,传统材料阻燃处理手段已无法满足消防安全需求,需要额外引入火灾预警系统。当今主流的商业火灾预警系统与建筑材料分离,往往需要较长时间才能实现预警,无法为火灾的及时扑救和人员撤离提供最佳时间,而实现火灾超早期预警的关键在于将火灾传感器与基体紧密结合。智能涂层是一种人造的、能够对外部刺激有选择地提供最佳反应的涂层系统。将智能涂层引入传统建材领域,赋予各种材料阻燃预警响应功能,使其在使用过程中主动对外界“火灾”做出反应,将极大程度提高建筑的可靠性,对保障人员的生命及财产安全具有重大研究意义。本文综述并讨论了近年来阻燃预警涂层的火灾响应机制、构筑策略及目前的研究现状,展望了该领域的发展和应用前景。

     

  • 图  1  涂层火灾预警机制

    Figure  1.  Early fire warning mechanism of coatings

    图  2  化学反应型阻燃预警涂层火灾预警机制: (a) 氧化石墨烯(GO)[8]; (b) 聚乙烯醇(PVA)/硝酸银[13]; (c) 表面活性剂[14]

    Figure  2.  Fire warning mechanism of flame retardant coatings: (a) Graphene oxide (GO)[8]; (b) Poly(vinyl alcohol) (PVA)/AgNO3[13]; (c) Surfactant[14]

    图  3  金属氧化物半导体火灾预警机制[15]

    Figure  3.  Fire warning mechanism of metal oxide semiconductor[15]

    图  4  木材表面常见功能涂层

    Figure  4.  Common functional coatings on wood

    图  5  阻燃预警涂层构筑策略

    Figure  5.  Construction strategy of flame retardant coatings with fire-warning capabilities

    图  6  GO基阻燃预警涂层: (a)易燃材料表面的阻燃预警涂层[36]; (b) GO纳米纸[37]; (c) GO/FC功能涂层的构建及改进[8,41]

    Figure  6.  GO based fire warning coatings: (a) GO/silicone coatings as efficient flame detection and early warning sensors on combustible materials[36]; (b) GO based nanopaper[37]; (c) Construction and improvement of GO/FC functional coating[8,41]

  • [1] QUALEY J R. Fire test comparisons of smoke detector response times[J]. Fire Technology,2000,36(2):89-108. doi: 10.1023/A:1015498224060
    [2] STAMHUIS N. Design with smart materials: The development of a tactile interface platform to control light and sound in domestic environments[D]. Netherlands: Delft University of Technology, 2015.
    [3] JI F, LI J, QIN Z, et al. Engineering pectin-based hollow nanocapsules for delivery of anticancer drug[J]. Carbohydrate Polymer,2017,177:86-96. doi: 10.1016/j.carbpol.2017.08.107
    [4] YIN T, ZHONG D, LIU J, et al. Stretch tuning of the debye ring for 2D photonic crystals on a dielectric elastomer membrane[J]. Soft Matter,2018,14(7):1120-1129. doi: 10.1039/C7SM02322G
    [5] LAN X, LIU Y, LV H, et al. Fiber reinforced shape-memory polymer composite and its application in a deployable hinge[J]. Smart Materials and Structures,2009,18(2):024002. doi: 10.1088/0964-1726/18/2/024002
    [6] SAKURAI T, MORISHITA S. Seismic response reduction of a three-story building by an MR grease damper[J]. Frontiers of Mechanical Engineering,2017,12(2):224-233. doi: 10.1007/s11465-017-0413-6
    [7] SCHNIEPP H C, LI J L, MCALLISTER M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide[J]. Journal of Physical Chemistry B,2006,110(17):8535-8539. doi: 10.1021/jp060936f
    [8] XIE H, LAI X, LI H, et al. A highly efficient flame retardant nacre-inspired nanocoating with ultrasensitive fire-warning and self-healing capabilities[J]. Chemical Engineering Journal,2019,369:8-17. doi: 10.1016/j.cej.2019.03.045
    [9] XIAO M, DU X S, MENG Y Z, et al. The influence of thermal treatment conditions on the structures and electrical conductivities of graphite oxide[J]. New Carbon Materials,2004,19(2):92-96.
    [10] 侯若男, 彭同江, 孙红娟, 等. 热还原温度对氧化石墨烯电阻-温度特性的影响[J]. 人工晶体学报, 2014, 43(10):2656-2663. doi: 10.3969/j.issn.1000-985X.2014.10.032

    HOU Ruonan, PENG Tongjiang, SUN Hongjuan, et al. Influence of thermal reduction temperature on the resistance-temperature characteristics of graphene oxide[J]. Journal of Synthetic Crystals,2014,43(10):2656-2663(in Chinese). doi: 10.3969/j.issn.1000-985X.2014.10.032
    [11] PAN Y, JIANG J, WANG R, et al. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices[J]. Journal of Hazardous Materials,2008,157(2-3):510-517. doi: 10.1016/j.jhazmat.2008.01.016
    [12] SCHARTEL B, HULL T R. Development of fire-retarded materials: Interpretation of cone calorimeter data[J]. Fire and Materials,2007,31(5):327-354. doi: 10.1002/fam.949
    [13] LIU P, CHEN W, BAI S, et al. Fabrication of an ultralight flame-induced high conductivity hybrid sponge based on poly(vinyl alcohol)/silver nitrate composite[J]. Materials & Design,2018,139:90-103.
    [14] YU Q, WENG P, HAN L, et al. Enhanced thermal conductivity of flexible cotton fabrics coated with reactive MWCNT nanofluid for potential application in thermal conductivity coatings and fire warning[J]. Cellulose,2019,26(12):7523-7535. doi: 10.1007/s10570-019-02592-w
    [15] ZHANG M, WANG M, ZHANG M, et al. Flexible and thermally induced switchable fire alarm fabric based on layer-by-layer self-assembled silver sheet/Fe3O4 nanowire composite[J]. ACS Applied Materials & Interfaces,2019,11(50):47456-47467.
    [16] 李洪飞, 王华进, 扈中武, 等. 氧化石墨烯在膨胀型水性防火涂料中阻燃和抑烟作用研究[J]. 涂料工业, 2015, 45(1):1-8.

    LI Hongfei, WANG Huajin, HU Zhongwu, et al. Effects of graphene oxide on flame retardancy and smoke suppression of waterborne intumescent fire resistant coatings[J]. Paint & Coatings Industry,2015,45(1):1-8(in Chinese).
    [17] WANG Z, SHEN D, WU C, et al. Thermal behavior and kinetics of co-pyrolysis of cellulose and polyethylene with the addition of transition metals[J]. Energy Conversion & Management,2018,172:32-38.
    [18] HOU Y, HU W, ZHOU X, et al. Vertically aligned nickel 2-methylimidazole metal-organic framework fabricated from graphene oxides for enhancing fire safety of polystyrene[J]. Industrial & Engineering Chemistry Research,2017,56(30):8778-8786.
    [19] WU Q, GUO J, FEI B, et al. Synthesis of a novel polyhydroxy triazine-based charring agent and its effects on improving the flame retardancy of polypropylene with ammonium polyphosphate and zinc borate[J]. Polymer Degradation and Stability,2020,175:109123.
    [20] 郑根武. 铬酸处理液对UHMWPE纤维性能的影响[J]. 现代塑料加工应用, 2007, 19(2):31-33. doi: 10.3969/j.issn.1004-3055.2007.02.009

    ZHENG Genwu. Influence of chrome acid treatment solutions on the properties of UHMWPE fibers[J]. Modern Plastics Processing and Applications,2007,19(2):31-33(in Chinese). doi: 10.3969/j.issn.1004-3055.2007.02.009
    [21] ENCINAS N, DÍAZ-BENITO B, ABENOJAR J, et al. Extreme durability of wettability changes on polyolefin surfaces by atmospheric pressure plasma torch[J]. Surface & Coatings Technology,2010,205(2):396-402.
    [22] SCHNEIDER M H, WILLAIME H, TRAN Y, et al. Wettability patterning by UV-initiated graft polymerization of poly(acrylic acid) in closed microfiuidic systems of complex geometry[J]. Analytical Chemistry,2010,82(21):8848-8855. doi: 10.1021/ac101345m
    [23] KOLIBABA T J, GRUNLAN J C. Environmentally benign polyelectrolyte complex that renders wood flame retardant and mechanically strengthened[J]. Macromolecular Materials and Engineering,2019,304(8):1900179. doi: 10.1002/mame.201900179
    [24] 段辉, 汪厚植, 赵雷, 等. 氟化丙烯酸/二氧化硅杂化超疏水涂层的性能研究[J]. 涂料工业, 2006, 36(12):1-4. doi: 10.3969/j.issn.0253-4312.2006.12.001

    DUAN Hui, WANG Houzhi, ZHAO Lei, et al. Study on performance of fluorinated acrylic resin/silica hybrid super-hydrophobic coatings[J]. Paint & Coatings Industry,2006,36(12):1-4(in Chinese). doi: 10.3969/j.issn.0253-4312.2006.12.001
    [25] MIKLECIC J, TURKULIN H, JIROUS-RAJKOVIC V. Weathering performance of surface of thermally modified wood finished with nanoparticles-modified water-borne polyacrylate coatings[J]. Applied Surface Science,2017,408:103-109. doi: 10.1016/j.apsusc.2017.03.011
    [26] LANDRY V, BLANCHET P, RIEDL B. Mechanical and optical properties of clay-based nanocomposites coatings for wood flooring[J]. Progress in Organic Coatings,2010,67(4):381-388. doi: 10.1016/j.porgcoat.2009.12.011
    [27] AUCLAIR N, RIEDL B, BLANCHARD V. Improvement of photoprotection of wood coatings by using inorganic nanoparticles as ultraviolet absorbers[J]. Forest Products Journal,2011,61(1):20-27. doi: 10.13073/0015-7473-61.1.20
    [28] ZHAO G, DING C, PAN M, et al. Fabrication of NCC-SiO2 hybrid colloids and its application on waterborne poly(acrylic acid) coatings[J]. Progress in Organic Coatings,2018,122:88-95. doi: 10.1016/j.porgcoat.2018.05.014
    [29] KONG L, TU K, GUAN H, et al. Growth of high-density ZnO nanorods on wood with enhanced photostability, flame retardancy and water repellency[J]. Applied Surface Science,2017,407:479-484. doi: 10.1016/j.apsusc.2017.02.252
    [30] LI J, YU H, SUN Q, et al. Growth of TiO2 coating on wood surface using controlled hydrothermal method at low temperatures[J]. Applied Surface Science,2010,256(16):5046-5050. doi: 10.1016/j.apsusc.2010.03.053
    [31] WANG X, LIU T. Fabrication and characterization of ultrathin graphene oxide/poly(vinyl alcohol) composite films via layer-by-layer assembly[J]. Journal of Macromolecular Science Part B: Physics,2011,50(6):1098-1107. doi: 10.1080/00222348.2010.497694
    [32] KULKARNI D D, CHOI I, SINGAMANENI S S, et al. Graphene oxide-polyelectrolyte nanomembranes[J]. ACS Nano,2010,4(8):4667-4676. doi: 10.1021/nn101204d
    [33] 沈凯燕. 硅烷改性氧化石墨烯纳米复合材料的制备[D]. 武汉: 华中师范大学, 2011.

    SHEN Kaiyan. Synthesis and characterization of the nanomaterials of graphene oxide functionalized by silane[D]. Wuhan: Central China Normal University, 2011(in Chinses).
    [34] 楚景慧, 佟立波, 江忠浩. 氧化石墨烯/硅烷自组装涂层对镁合金耐腐蚀和耐磨损性能的影响[J]. 表面技术, 2019, 48(3):62-68.

    CHU Jinghui, TONG Libo, JIANG Zhonghao. Effect of graphene oxide/silane self-assemble coating on corrosion and wear resistance of Mg alloy[J]. Surface Technology,2019,48(3):62-68(in Chinese).
    [35] WANG M, ZHANG M, PANG L, et al. Fabrication of highly durable polysiloxane-zinc oxide (ZnO) coated polyethylene terephthalate (PET) fabric with improved ultraviolet resistance, hydrophobicity, and thermal resistance[J]. Journal of Colloid & Interface Science,2019,537:91-100.
    [36] WU Q, GONG L, LI Y, et al. Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings[J]. ACS Nano,2018,12(1):416-424. doi: 10.1021/acsnano.7b06590
    [37] HUANG N J, CAO C F, LI Y, et al. Silane grafted graphene oxide papers for improved flame resistance and fast fire alarm response[J]. Composites Part B: Engineering,2019,168:413-420. doi: 10.1016/j.compositesb.2019.03.053
    [38] ZHANG Z H, ZHANG J W, CAO C F, et al. Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response[J]. Chemical Engineering Journal,2020,386:123894. doi: 10.1016/j.cej.2019.123894
    [39] GUO K Y, WU Q, MAO M, et al. Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response[J]. Composites Part B: Engineering,2020,193:108017.
    [40] HUANG N J, XIA Q Q, ZHANG Z H, et al. Simultaneous improvements in fire resistance and alarm response of GO paper via one-step 3-mercaptopropyltrimethoxysilane functionalization for efficient fire safety and prevention[J]. Composites Part A: Applied Science and Manufacturing,2020,131:105797. doi: 10.1016/j.compositesa.2020.105797
    [41] XIE H, LAI X, LI H, et al. A sandwich-like flame retardant nanocoating for supersensitive fire-warning[J]. Chemical Engineering Journal,2020,382:122929. doi: 10.1016/j.cej.2019.122929
    [42] CHEN W, LIU P, LIU Y, et al. A temperature-induced conductive coating via layer-by-layer assembly of functionalized graphene oxide and carbon nanotubes for a flexible, adjustable response time flame sensor[J]. Chemical Engineering Journal,2018,353:115-125. doi: 10.1016/j.cej.2018.07.110
    [43] CHEN F F, ZHU Y J, CHEN F, et al. Fire alarm wallpaper based on fire-resistant hydroxyapatite nanowire inorganic paper and graphene oxide thermosensitive sensor[J]. ACS Nano,2018,12(4):3159-3171. doi: 10.1021/acsnano.8b00047
    [44] LIU Q, YANG S, REN J, et al. Flame-retardant and sustainable silk ionotronic skin for fire alarm systems[J]. ACS Materials Letters,2020,2(7):712-720. doi: 10.1021/acsmaterialslett.0c00062
    [45] ZHANG Y, CHEN F, ZHANG Y, et al. Influence of graphene oxide on the antiwear and antifriction performance of MAO coating fabricated on Mg-Li alloy[J]. Surface and Coatings Technology,2019,364:144-156. doi: 10.1016/j.surfcoat.2019.01.103
    [46] FENG J, WANG X, GUO P, et al. Mechanical properties and wear resistance of sulfonated graphene waterborne polyurethane composites prepared by in-situ method[J]. Polymers,2018,10(1):75.
    [47] XUE C, SHI X, FANG X. The “pure marriage” between 3D printing and well-ordered nanoarrays by using PEALD assisted hydrothermal surface engineering[J]. ACS Applied Materials & Interfaces,2016,8(13):8393-8400.
    [48] 高鹤, 梁大鑫, 李坚, 等. 纳米TiO2-ZnO二元负载木材的制备及性质[J]. 高等学校化学学报, 2016, 37(6):1075-1081.

    GAO He, LIANG Daxin, LI Jian, et al. Preparation and properties of nano TiO2-ZnO binary collaborative wood[J]. Chemical Journal of Chinese Universities,2016,37(6):1075-1081(in Chinese).
  • 加载中
图(6)
计量
  • 文章访问数:  1559
  • HTML全文浏览量:  639
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 录用日期:  2020-08-02
  • 网络出版日期:  2020-08-13
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回