Research progress of intelligent flame retardant coating with fire-warning capabilities
-
摘要: 随着城市化进展的加快和高层建筑的增加,传统材料阻燃处理手段已无法满足消防安全需求,需要额外引入火灾预警系统。当今主流的商业火灾预警系统与建筑材料分离,往往需要较长时间才能实现预警,无法为火灾的及时扑救和人员撤离提供最佳时间,而实现火灾超早期预警的关键在于将火灾传感器与基体紧密结合。智能涂层是一种人造的、能够对外部刺激有选择地提供最佳反应的涂层系统。将智能涂层引入传统建材领域,赋予各种材料阻燃预警响应功能,使其在使用过程中主动对外界“火灾”做出反应,将极大程度提高建筑的可靠性,对保障人员的生命及财产安全具有重大研究意义。本文综述并讨论了近年来阻燃预警涂层的火灾响应机制、构筑策略及目前的研究现状,展望了该领域的发展和应用前景。Abstract: With the rapid development of urbanization and the increase of high-rise buildings, traditional fire-retardant materials are unable to meet the fire safety needs, additional fire warning system is required. However, today’s dominate commercial fire warning system is separated from building materials and thus need a long time to activate the alarm system, which wastes the best time for firefighting and evacuation. The key to realize super early fire warning is closely integrating the fire warning system and the matrix. Intelligent coating is a kind of artificial coating system that selectively provides the best response to external stimulus. By introducing intelligent coating into the traditional building fields, giving different kinds of materials flame retardant coating with fire-warning capabilities could make them actively respond to the external “fire” in the usage process, which would greatly improve the reliability of buildings, safety of life and their property safety as well. This paper summarizes and discusses the fire response mechanism, construction strategy and current research progress of flame retardant coating with fire-warning capabilities in recent years, and prospects future development and applications of this field.
-
Key words:
- intelligent materials /
- functional coating /
- flame retardant /
- fire alarm /
- graphene oxide
-
图 6 GO基阻燃预警涂层: (a)易燃材料表面的阻燃预警涂层[36]; (b) GO纳米纸[37]; (c) GO/FC功能涂层的构建及改进[8,41]
Figure 6. GO based fire warning coatings: (a) GO/silicone coatings as efficient flame detection and early warning sensors on combustible materials[36]; (b) GO based nanopaper[37]; (c) Construction and improvement of GO/FC functional coating[8,41]
-
[1] QUALEY J R. Fire test comparisons of smoke detector response times[J]. Fire Technology,2000,36(2):89-108. doi: 10.1023/A:1015498224060 [2] STAMHUIS N. Design with smart materials: The development of a tactile interface platform to control light and sound in domestic environments[D]. Netherlands: Delft University of Technology, 2015. [3] JI F, LI J, QIN Z, et al. Engineering pectin-based hollow nanocapsules for delivery of anticancer drug[J]. Carbohydrate Polymer,2017,177:86-96. doi: 10.1016/j.carbpol.2017.08.107 [4] YIN T, ZHONG D, LIU J, et al. Stretch tuning of the debye ring for 2D photonic crystals on a dielectric elastomer membrane[J]. Soft Matter,2018,14(7):1120-1129. doi: 10.1039/C7SM02322G [5] LAN X, LIU Y, LV H, et al. Fiber reinforced shape-memory polymer composite and its application in a deployable hinge[J]. Smart Materials and Structures,2009,18(2):024002. doi: 10.1088/0964-1726/18/2/024002 [6] SAKURAI T, MORISHITA S. Seismic response reduction of a three-story building by an MR grease damper[J]. Frontiers of Mechanical Engineering,2017,12(2):224-233. doi: 10.1007/s11465-017-0413-6 [7] SCHNIEPP H C, LI J L, MCALLISTER M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide[J]. Journal of Physical Chemistry B,2006,110(17):8535-8539. doi: 10.1021/jp060936f [8] XIE H, LAI X, LI H, et al. A highly efficient flame retardant nacre-inspired nanocoating with ultrasensitive fire-warning and self-healing capabilities[J]. Chemical Engineering Journal,2019,369:8-17. doi: 10.1016/j.cej.2019.03.045 [9] XIAO M, DU X S, MENG Y Z, et al. The influence of thermal treatment conditions on the structures and electrical conductivities of graphite oxide[J]. New Carbon Materials,2004,19(2):92-96. [10] 侯若男, 彭同江, 孙红娟, 等. 热还原温度对氧化石墨烯电阻-温度特性的影响[J]. 人工晶体学报, 2014, 43(10):2656-2663. doi: 10.3969/j.issn.1000-985X.2014.10.032HOU Ruonan, PENG Tongjiang, SUN Hongjuan, et al. Influence of thermal reduction temperature on the resistance-temperature characteristics of graphene oxide[J]. Journal of Synthetic Crystals,2014,43(10):2656-2663(in Chinese). doi: 10.3969/j.issn.1000-985X.2014.10.032 [11] PAN Y, JIANG J, WANG R, et al. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices[J]. Journal of Hazardous Materials,2008,157(2-3):510-517. doi: 10.1016/j.jhazmat.2008.01.016 [12] SCHARTEL B, HULL T R. Development of fire-retarded materials: Interpretation of cone calorimeter data[J]. Fire and Materials,2007,31(5):327-354. doi: 10.1002/fam.949 [13] LIU P, CHEN W, BAI S, et al. Fabrication of an ultralight flame-induced high conductivity hybrid sponge based on poly(vinyl alcohol)/silver nitrate composite[J]. Materials & Design,2018,139:90-103. [14] YU Q, WENG P, HAN L, et al. Enhanced thermal conductivity of flexible cotton fabrics coated with reactive MWCNT nanofluid for potential application in thermal conductivity coatings and fire warning[J]. Cellulose,2019,26(12):7523-7535. doi: 10.1007/s10570-019-02592-w [15] ZHANG M, WANG M, ZHANG M, et al. Flexible and thermally induced switchable fire alarm fabric based on layer-by-layer self-assembled silver sheet/Fe3O4 nanowire composite[J]. ACS Applied Materials & Interfaces,2019,11(50):47456-47467. [16] 李洪飞, 王华进, 扈中武, 等. 氧化石墨烯在膨胀型水性防火涂料中阻燃和抑烟作用研究[J]. 涂料工业, 2015, 45(1):1-8.LI Hongfei, WANG Huajin, HU Zhongwu, et al. Effects of graphene oxide on flame retardancy and smoke suppression of waterborne intumescent fire resistant coatings[J]. Paint & Coatings Industry,2015,45(1):1-8(in Chinese). [17] WANG Z, SHEN D, WU C, et al. Thermal behavior and kinetics of co-pyrolysis of cellulose and polyethylene with the addition of transition metals[J]. Energy Conversion & Management,2018,172:32-38. [18] HOU Y, HU W, ZHOU X, et al. Vertically aligned nickel 2-methylimidazole metal-organic framework fabricated from graphene oxides for enhancing fire safety of polystyrene[J]. Industrial & Engineering Chemistry Research,2017,56(30):8778-8786. [19] WU Q, GUO J, FEI B, et al. Synthesis of a novel polyhydroxy triazine-based charring agent and its effects on improving the flame retardancy of polypropylene with ammonium polyphosphate and zinc borate[J]. Polymer Degradation and Stability,2020,175:109123. [20] 郑根武. 铬酸处理液对UHMWPE纤维性能的影响[J]. 现代塑料加工应用, 2007, 19(2):31-33. doi: 10.3969/j.issn.1004-3055.2007.02.009ZHENG Genwu. Influence of chrome acid treatment solutions on the properties of UHMWPE fibers[J]. Modern Plastics Processing and Applications,2007,19(2):31-33(in Chinese). doi: 10.3969/j.issn.1004-3055.2007.02.009 [21] ENCINAS N, DÍAZ-BENITO B, ABENOJAR J, et al. Extreme durability of wettability changes on polyolefin surfaces by atmospheric pressure plasma torch[J]. Surface & Coatings Technology,2010,205(2):396-402. [22] SCHNEIDER M H, WILLAIME H, TRAN Y, et al. Wettability patterning by UV-initiated graft polymerization of poly(acrylic acid) in closed microfiuidic systems of complex geometry[J]. Analytical Chemistry,2010,82(21):8848-8855. doi: 10.1021/ac101345m [23] KOLIBABA T J, GRUNLAN J C. Environmentally benign polyelectrolyte complex that renders wood flame retardant and mechanically strengthened[J]. Macromolecular Materials and Engineering,2019,304(8):1900179. doi: 10.1002/mame.201900179 [24] 段辉, 汪厚植, 赵雷, 等. 氟化丙烯酸/二氧化硅杂化超疏水涂层的性能研究[J]. 涂料工业, 2006, 36(12):1-4. doi: 10.3969/j.issn.0253-4312.2006.12.001DUAN Hui, WANG Houzhi, ZHAO Lei, et al. Study on performance of fluorinated acrylic resin/silica hybrid super-hydrophobic coatings[J]. Paint & Coatings Industry,2006,36(12):1-4(in Chinese). doi: 10.3969/j.issn.0253-4312.2006.12.001 [25] MIKLECIC J, TURKULIN H, JIROUS-RAJKOVIC V. Weathering performance of surface of thermally modified wood finished with nanoparticles-modified water-borne polyacrylate coatings[J]. Applied Surface Science,2017,408:103-109. doi: 10.1016/j.apsusc.2017.03.011 [26] LANDRY V, BLANCHET P, RIEDL B. Mechanical and optical properties of clay-based nanocomposites coatings for wood flooring[J]. Progress in Organic Coatings,2010,67(4):381-388. doi: 10.1016/j.porgcoat.2009.12.011 [27] AUCLAIR N, RIEDL B, BLANCHARD V. Improvement of photoprotection of wood coatings by using inorganic nanoparticles as ultraviolet absorbers[J]. Forest Products Journal,2011,61(1):20-27. doi: 10.13073/0015-7473-61.1.20 [28] ZHAO G, DING C, PAN M, et al. Fabrication of NCC-SiO2 hybrid colloids and its application on waterborne poly(acrylic acid) coatings[J]. Progress in Organic Coatings,2018,122:88-95. doi: 10.1016/j.porgcoat.2018.05.014 [29] KONG L, TU K, GUAN H, et al. Growth of high-density ZnO nanorods on wood with enhanced photostability, flame retardancy and water repellency[J]. Applied Surface Science,2017,407:479-484. doi: 10.1016/j.apsusc.2017.02.252 [30] LI J, YU H, SUN Q, et al. Growth of TiO2 coating on wood surface using controlled hydrothermal method at low temperatures[J]. Applied Surface Science,2010,256(16):5046-5050. doi: 10.1016/j.apsusc.2010.03.053 [31] WANG X, LIU T. Fabrication and characterization of ultrathin graphene oxide/poly(vinyl alcohol) composite films via layer-by-layer assembly[J]. Journal of Macromolecular Science Part B: Physics,2011,50(6):1098-1107. doi: 10.1080/00222348.2010.497694 [32] KULKARNI D D, CHOI I, SINGAMANENI S S, et al. Graphene oxide-polyelectrolyte nanomembranes[J]. ACS Nano,2010,4(8):4667-4676. doi: 10.1021/nn101204d [33] 沈凯燕. 硅烷改性氧化石墨烯纳米复合材料的制备[D]. 武汉: 华中师范大学, 2011.SHEN Kaiyan. Synthesis and characterization of the nanomaterials of graphene oxide functionalized by silane[D]. Wuhan: Central China Normal University, 2011(in Chinses). [34] 楚景慧, 佟立波, 江忠浩. 氧化石墨烯/硅烷自组装涂层对镁合金耐腐蚀和耐磨损性能的影响[J]. 表面技术, 2019, 48(3):62-68.CHU Jinghui, TONG Libo, JIANG Zhonghao. Effect of graphene oxide/silane self-assemble coating on corrosion and wear resistance of Mg alloy[J]. Surface Technology,2019,48(3):62-68(in Chinese). [35] WANG M, ZHANG M, PANG L, et al. Fabrication of highly durable polysiloxane-zinc oxide (ZnO) coated polyethylene terephthalate (PET) fabric with improved ultraviolet resistance, hydrophobicity, and thermal resistance[J]. Journal of Colloid & Interface Science,2019,537:91-100. [36] WU Q, GONG L, LI Y, et al. Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings[J]. ACS Nano,2018,12(1):416-424. doi: 10.1021/acsnano.7b06590 [37] HUANG N J, CAO C F, LI Y, et al. Silane grafted graphene oxide papers for improved flame resistance and fast fire alarm response[J]. Composites Part B: Engineering,2019,168:413-420. doi: 10.1016/j.compositesb.2019.03.053 [38] ZHANG Z H, ZHANG J W, CAO C F, et al. Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response[J]. Chemical Engineering Journal,2020,386:123894. doi: 10.1016/j.cej.2019.123894 [39] GUO K Y, WU Q, MAO M, et al. Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response[J]. Composites Part B: Engineering,2020,193:108017. [40] HUANG N J, XIA Q Q, ZHANG Z H, et al. Simultaneous improvements in fire resistance and alarm response of GO paper via one-step 3-mercaptopropyltrimethoxysilane functionalization for efficient fire safety and prevention[J]. Composites Part A: Applied Science and Manufacturing,2020,131:105797. doi: 10.1016/j.compositesa.2020.105797 [41] XIE H, LAI X, LI H, et al. A sandwich-like flame retardant nanocoating for supersensitive fire-warning[J]. Chemical Engineering Journal,2020,382:122929. doi: 10.1016/j.cej.2019.122929 [42] CHEN W, LIU P, LIU Y, et al. A temperature-induced conductive coating via layer-by-layer assembly of functionalized graphene oxide and carbon nanotubes for a flexible, adjustable response time flame sensor[J]. Chemical Engineering Journal,2018,353:115-125. doi: 10.1016/j.cej.2018.07.110 [43] CHEN F F, ZHU Y J, CHEN F, et al. Fire alarm wallpaper based on fire-resistant hydroxyapatite nanowire inorganic paper and graphene oxide thermosensitive sensor[J]. ACS Nano,2018,12(4):3159-3171. doi: 10.1021/acsnano.8b00047 [44] LIU Q, YANG S, REN J, et al. Flame-retardant and sustainable silk ionotronic skin for fire alarm systems[J]. ACS Materials Letters,2020,2(7):712-720. doi: 10.1021/acsmaterialslett.0c00062 [45] ZHANG Y, CHEN F, ZHANG Y, et al. Influence of graphene oxide on the antiwear and antifriction performance of MAO coating fabricated on Mg-Li alloy[J]. Surface and Coatings Technology,2019,364:144-156. doi: 10.1016/j.surfcoat.2019.01.103 [46] FENG J, WANG X, GUO P, et al. Mechanical properties and wear resistance of sulfonated graphene waterborne polyurethane composites prepared by in-situ method[J]. Polymers,2018,10(1):75. [47] XUE C, SHI X, FANG X. The “pure marriage” between 3D printing and well-ordered nanoarrays by using PEALD assisted hydrothermal surface engineering[J]. ACS Applied Materials & Interfaces,2016,8(13):8393-8400. [48] 高鹤, 梁大鑫, 李坚, 等. 纳米TiO2-ZnO二元负载木材的制备及性质[J]. 高等学校化学学报, 2016, 37(6):1075-1081.GAO He, LIANG Daxin, LI Jian, et al. Preparation and properties of nano TiO2-ZnO binary collaborative wood[J]. Chemical Journal of Chinese Universities,2016,37(6):1075-1081(in Chinese).