Effect of rare earth Ce grafted carbon nanotubes-carbon fiber multi-scale reinforcement on interfacial properties of epoxy matrix composites
-
摘要: 将马来酰亚胺官能化的多壁碳纳米管(CNTs)和碳纤维(CF)混合并通过CeCl3处理,得到CNTs-CF多尺度增强体,采用FTIR、XPS、SEM对增强体的表面物理化学状态进行表征;以环氧树脂(EP)为基体,通过模压法制备CNTs-CF/EP复合材料,对其力学性能和断口形貌进行分析,探讨CNTs-CF多尺度增强体对CNTs-CF/EP复合材料界面性能的影响。结果表明:通过Ce的桥接作用,可以将改性后的CNTs化学接枝在CF表面,以同时解决CF与树脂基体间界面结合弱及CNTs不易分散的问题,有效改善了增强体与基体间的界面性能。因此CNTs-CF/EP复合材料的拉伸强度和杨氏模量较CF/EP复合材料分别提高了36.76%和71.57%;较CeCl3改性CF(RECF)/EP复合材料分别提高了24.79%和52.17%。采用稀土Ce的化学接枝法成功制备出CNTs-CF多尺度增强体,为获得高级轻质树脂基复合材料提供了一种环境友好的新方法。
-
关键词:
- 碳纳米管(CNTs) /
- 碳纤维(CF) /
- CeCl3 /
- CNTs-CF多尺度增强体 /
- 界面结合 /
- 力学性能
Abstract: The multi-walled carbon nanotubes (CNTs) functionalized with maleimide and carbon fibers (CF) were mixed and treated with CeCl3 to obtain CNTs-CF multi-scale reinforcement. These reinforcements were characterized by FTIR, XPS and SEM. The CNTs-CF/epoxy (EP) composite was prepared by the molding method with EP as the matrix. The mechanical properties and fracture morphology of CNTs-CF/EP composite were analyzed to explore the influence of CNTs-CF multi-scale reinforcement on the interfacial properties of EP composite. The results show that the modified CNTs can be chemically grafted on the CF surface through the bridging effect of rare earth Ce to solve the problems of weak interface bonding between CF and resin matrix and CNTs not easy to disperse, effectively improving the interfacial performance between the reinforcement and matrix. Therefore, the tensile strength and Young’s modulus of CNTs-CF/EP composite are increased by 36.76% and 71.57% relative to those of CF/EP composite, respectively; 24.79% and 52.17% relative to those of CF modified by CeCl3 (RECF)/EP composite, respectively. The chemical grafting method of rare earth Ce is successfully used to prepare CNTs-CF multi-scale reinforcement, which provides a new environment-friendly method for obtaining advanced lightweight resin matrix composites. -
表 1 CF、CeCl3改性的CF (RECF)和CNTs-CF多尺度增强体表面元素种类和原子分数
Table 1. Types and atomic fractions of surface elements of CF, CF modified by CeCl3 (RECF) and CNTs-CF multi-scale reinforcement
at% Element CF RECF CNTs-CF C 85.59 71.90 77.49 N 3.21 5.91 3.39 O 11.06 18.96 16.05 Ce 0.14 3.23 3.07 -
[1] RHEE I, KIM J H, PARK S H, et al. Mechanical and electrical properties of cement paste incorporated with pitch-based carbon fiber[J]. Carbon Letters,2017,23:22-29. [2] ANDIDEH M, ESFANDEH M. Effect of surface modification of electrochemically oxidized carbon fibers by grafting hydroxyl and amine functionalized hyperbranched polyurethanes on interlaminar shear strength of epoxy composites[J]. Carbon,2017,123:233-242. doi: 10.1016/j.carbon.2017.07.035 [3] HU L, HECHT D S, GRÜNER G. Carbon nanotube thin films: Fabrication, properties, and applications[J]. Chemical Reviews,2010,110(10):5790-5844. doi: 10.1021/cr9002962 [4] COLEMAN J N, KHAN U A, GUN'KO Y K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Advanced Materials,2006,18(6):689-706. doi: 10.1002/adma.200501851 [5] 郑林宝, 王延相, 陈纪强, 等. CF-CNTs多尺度增强体的制备及CF-CNTs/环氧树脂复合材料力学性能[J]. 复合材料学报, 2017, 34(11):2428-2436.ZHENG L B, WANG Y X, CHEN J Q, et al. Preparation of CF-CNTs multi-scale reinforcement and mechanical properties of CF-CNTs/epoxy composites[J]. Acta Materiae Compositae Sinica,2017,34(11):2428-2436(in Chinese). [6] COLEMAN J N, KHAN U, BLAU W J, et al. Small but Strong: A review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon,2006,44(9):1624-1652. [7] QIAN H, GREENHALGH E S, SHAFFER M S P, et al. Carbon nanotube-based hierarchical composites: A review[J]. Journal of Materials Chemistry,2010,20(23):4751-4762. [8] KIM K J, KIM J, YU W R, et al. Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface[J]. Carbon,2013,54:258-267. doi: 10.1016/j.carbon.2012.11.037 [9] GREEF N D, ZHANG L, MAGREZ A, et al. Direct growth of carbon nanotubes on carbon fibers: Effect of the CVD parameters on the degradation of mechanical properties of carbon fibers[J]. Diamond & Related Materials,2015,51:39-48. [10] BEDI H S, TIWARI M, AGNIHOTRI P K. Quantitative determination of size and properties of interphases in carbon nanotube-based multiscale composites[J]. Carbon,2018,132:181-190. [11] YAO X, JIANG J, XU C, et al. Improved interfacial properties of carbon fiber/epoxy composites through graphene oxide-assisted deposition of carbon nanotubes on carbon fiber surface[J]. Fibers and Polymers,2017,18(7):1323-1329. doi: 10.1007/s12221-017-1013-0 [12] YAO X, GAO X, JIANG J, et al. Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites[J]. Composites Part B: Engineering,2018,132:170-177. doi: 10.1016/j.compositesb.2017.09.012 [13] ZHENG H, LI Q, YU C, et al. The direct architecture of carbon fiber-carbon nanofiber hierarchical reinforcements for superior interfacial properties of CF/epoxy composites[J]. Polymers For Advanced Technologies,2019,30(3):620-630. doi: 10.1002/pat.4498 [14] 梁馨, 方洲, 罗丽娟, 等. 碳纳米管改性对碳/环氧复合材料层间性能的影响[J]. 宇航材料工艺, 2016, 46(4):56-59, 76.LIANG X, FANG Z, LUO L J, et al. Effect of carbon nanotube modification on interlaminal properties of C/E composite[J]. Aerospace Materials and Technology,2016,46(4):56-59, 76(in Chinese). [15] 齐乐华, 舒扬, 李贺军, 等. 电泳沉积CNTs掺杂C/C复合材料的微观组织与弯曲性能[J]. 无机材料学报, 2016, 31(2):201-206.QI L H, SHU Y, LI H J, et al. Microstructures and flexural properties of C/C composites doped with CNTs by electrophoretic deposition[J]. Journal of Inorganic Materials,2016,31(2):201-206(in Chinese). [16] YAO H, SUI X, ZHAO Z, et al. Optimization of interfacial microstructure and mechanical properties of carbon fiber/epoxy composites via carbon nanotube sizing[J]. Applied Surface Science,2015,347:583-590. doi: 10.1016/j.apsusc.2015.04.146 [17] PENG Q, HE X, LI Y, et al. Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly(amidoamine) for enhancing interfacial strength in carbon fiber composites[J]. Journal of Materials Chemistry,2012,22(13):5928-5931. doi: 10.1039/c2jm16723a [18] WU G, MA L, LIU L, et al. Interfacially reinforced methylphenyl silicone resin composites by chemically grafting multiwall carbon nanotubes onto carbon fibers[J]. Composites Part B: Engineering,2015,82:50-58. [19] WU G, MA L, LIU L, et al. Interface enhancement of carbon fiber reinforced methylphenyl silicone resin composites modified with silanized carbon nanotubes[J]. Materials & Design,2015,89:1343-1349. [20] ISLAM M S, DENG Y, TONG L, et al. Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: Towards next generation aerospace composites and energy storage applications[J]. Carbon,2016,96:701-710. doi: 10.1016/j.carbon.2015.10.002 [21] MEI L, HE X, LI Y, et al. Grafting carbon nanotubes onto carbon fiber by use of dendrimers[J]. Materials Letters,2010,64(22):2505-2508. doi: 10.1016/j.matlet.2010.07.056 [22] 王柏臣, 蔡安宁, 李俊杰, 等. HDI接枝碳纳米管/碳纤维混杂多尺度复合材料的制备和性能[J]. 沈阳航空航天大学学报, 2016, 33(4):48-54.WANG B C, CAI A N, LI J J, et al. Fabrication and properties of HDI grafted carbon nanotube/carbon fiber hybrid multi-scale composites[J]. Journal of Shenyang Aerospace University,2016,33(4):48-54(in Chinese). [23] CUI H, JIN Z, ZHENG D, et al. Effect of carbon fibers grafted with carbon nanotubes on mechanical properties of cement-based composites[J]. Construction and Building Materials,2018,181:713-720. doi: 10.1016/j.conbuildmat.2018.06.049 [24] CHEN Q, PENG Q, ZHAO X, et al. Grafting carbon nanotubes densely on carbon fibers by poly(propylene imine) for interfacial enhancement of carbon fiber composites[J]. Carbon,2019,158:704-710. [25] SHANGGUAN Q Q, CHENG X H. Friction and wear of rare earths modified carbon fibers filled PTFE composite under dry sliding condition[J]. Applied Surface Science, 2007, 253(22): 9000-9006. [26] SUN Z Y, CHENG X H. Investigation of carbon nanotube-containing film on silicon substrates and its tribological behavior[J]. Applied Surface Science,2015,355:272-278. doi: 10.1016/j.apsusc.2015.07.130 [27] JIANG M R, ZHOU H, CHENG X H. Effect of rare earth surface modification of carbon nanotubes on enhancement of interfacial bonding of carbon nanotubes reinforced epoxy matrix composites[J]. Journal of Materials Science,2019,54(14):10235-10248. doi: 10.1007/s10853-019-03631-4 [28] 中国国家标准化管理委员会. 塑料拉伸性能的测定: GB/T 1040—2006[S]. 北京: 中国标准出版社, 2006.Standardization Administration of the People’s Republic of China. Determination of tensile properties of plastics: GB/T 1040—2006[S]. Beijing: China Standards Press, 2006(in Chinese). [29] SARKAR S, BEKYAROVA E, NIYOGI S, et al. Diels-Alder chemistry of graphite and graphene: Graphene as diene and dienophile[J]. Journal of the American Chemical Society,2011,133(10):3324-3327. doi: 10.1021/ja200118b [30] 王怡, 冯展彬, 左洪礼, 等. 基于Diels-Alder反应的热可逆高导电硅橡胶/碳管复合材料的制备[J]. 高分子学报, 2019, 50(5):485-495.WANG Y, FENG Z B, ZUO H L, et al. Preparation of thermally reversible highly conductive silicone rubber/carbon tube composites based on Diels-Alder reaction[J]. Acta Polymerica Sinica,2019,50(5):485-495(in Chinese). [31] LIU W, ZHANG S, HAO L, et al. Fabrication of carbon nanotubes/carbon fiber hybrid fiber in industrial scale by sizing process[J]. Applied Surface Science,2013,284:914-920. doi: 10.1016/j.apsusc.2013.08.045 [32] LI L Z, WANG J, LIU W B, et al. Remarkable improvement in interfacial shear strength of carbon fiber/epoxy composite by large-scare sizing with epoxy sizing agent containing amine-treated MWCNTs[J]. Polymer Composites,2018,39(8):2734-2742. doi: 10.1002/pc.24263 [33] KÜLAH E, MAROT L, STEINER R, et al. Surface chemistry of rare-earth oxide surfaces at ambient conditions: Reactions with water and hydrocarbons[J]. Scientific Reports,2017,7:43369. doi: 10.1038/srep43369 [34] 王帅, 钟宏, 张骞, 等. 烷氧羰基硫脲树脂与Ag+的螯合机理[J]. 材料导报, 2010, 24(10):26-28.WANG S, ZHONG H, ZHANG Q, et al. The chelate mechanism of alkoxy carbonyl thiourea resin and Ag+[J]. Materials Herald,2010,24(10):26-28(in Chinese). [35] 张一帆, 王晓钧, 盛浩强, 等. 短切玻纤/低密度不饱和聚酯树脂材料的力学性能[J]. 热固性树脂, 2017, 32(1):44-49, 54.ZHANG Y F, WANG X J, SHENG H Q, et al. Mechanical properties of the chopped glass fiber/low density unsaturated polyester resin materials[J]. Thermosetting Resin,2017,32(1):44-49, 54(in Chinese). [36] CHEN J X, TUO W Y, WAN C F, et al. Shear test method for and mechanical characteristics of short basalt fiber reinforced polymer composite materials[J]. Journal of Applied Polymer Science,2018,135(16):46078. doi: 10.1002/app.46078 [37] 卓航, 李是卓, 韩恩林, 等. 高强高模聚酰亚胺纤维/环氧树脂复合材料力学性能与破坏机制[J]. 复合材料学报, 2019, 36(9):2101-2109.ZHUO H, LI S Z, HAN E L, et al. Mechanical properties and failure mechanism of high strength and high modulus polyimide fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2019,36(9):2101-2109(in Chinese). [38] 刘静, 陈勃翰, 李刚, 等. 激光改性纤维对其增强环氧树脂复合材料力学性能的影响[J]. 复合材料学报, 2017, 34(12):2708-2714.LIU J, CHEN B H, LI G, et al. Effect of laser modified fiber on mechanical properties of fibers reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica,2017,34(12):2708-2714(in Chinese).