留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土Ce接枝碳纳米管-碳纤维多尺度增强体对环氧树脂基复合材料界面性能的影响

李玮 程先华

李玮, 程先华. 稀土Ce接枝碳纳米管-碳纤维多尺度增强体对环氧树脂基复合材料界面性能的影响[J]. 复合材料学报, 2020, 37(11): 2789-2797. doi: 10.13801/j.cnki.fhclxb.20200805.002
引用本文: 李玮, 程先华. 稀土Ce接枝碳纳米管-碳纤维多尺度增强体对环氧树脂基复合材料界面性能的影响[J]. 复合材料学报, 2020, 37(11): 2789-2797. doi: 10.13801/j.cnki.fhclxb.20200805.002
LI Wei, CHENG Xianhua. Effect of rare earth Ce grafted carbon nanotubes-carbon fiber multi-scale reinforcement on interfacial properties of epoxy matrix composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2789-2797. doi: 10.13801/j.cnki.fhclxb.20200805.002
Citation: LI Wei, CHENG Xianhua. Effect of rare earth Ce grafted carbon nanotubes-carbon fiber multi-scale reinforcement on interfacial properties of epoxy matrix composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2789-2797. doi: 10.13801/j.cnki.fhclxb.20200805.002

稀土Ce接枝碳纳米管-碳纤维多尺度增强体对环氧树脂基复合材料界面性能的影响

doi: 10.13801/j.cnki.fhclxb.20200805.002
基金项目: 国家自然科学基金 (51975359);摩擦学国家重点实验摩擦学科学基金(SKLTKF17A02)
详细信息
    通讯作者:

    程先华,博士,教授,博士生导师,研究方向为纳米表面工程及摩擦学 E-mail:xhcheng@sjtu.edu.cn

  • 中图分类号: TB332

Effect of rare earth Ce grafted carbon nanotubes-carbon fiber multi-scale reinforcement on interfacial properties of epoxy matrix composites

  • 摘要: 将马来酰亚胺官能化的多壁碳纳米管(CNTs)和碳纤维(CF)混合并通过CeCl3处理,得到CNTs-CF多尺度增强体,采用FTIR、XPS、SEM对增强体的表面物理化学状态进行表征;以环氧树脂(EP)为基体,通过模压法制备CNTs-CF/EP复合材料,对其力学性能和断口形貌进行分析,探讨CNTs-CF多尺度增强体对CNTs-CF/EP复合材料界面性能的影响。结果表明:通过Ce的桥接作用,可以将改性后的CNTs化学接枝在CF表面,以同时解决CF与树脂基体间界面结合弱及CNTs不易分散的问题,有效改善了增强体与基体间的界面性能。因此CNTs-CF/EP复合材料的拉伸强度和杨氏模量较CF/EP复合材料分别提高了36.76%和71.57%;较CeCl3改性CF(RECF)/EP复合材料分别提高了24.79%和52.17%。采用稀土Ce的化学接枝法成功制备出CNTs-CF多尺度增强体,为获得高级轻质树脂基复合材料提供了一种环境友好的新方法。

     

  • 图  1  多壁碳纳米管(CNTs)与马来酰亚胺的Diels-Alder反应

    Figure  1.  Diels-Alder reaction of multi-walled carbon nanotubes (CNTs) with maleimide

    图  2  CNTs和马来酰亚胺官能化CNTs(M-CNTs)的FTIR和XPS图谱

    Figure  2.  FTIR and XPS spectra of CNTs and maleimide functionalised CNTs (M-CNTs)

    图  3  CF、RECF和CNTs-CF多尺度增强体的O 1s的XPS图谱

    Figure  3.  XPS spectra of O 1s of CF, RECF and CNTs-CF multi-scale reinforcement

    图  4  RECF 和CNTs-CF多尺度增强体的Ce与O成键示意图

    Figure  4.  Schematic diagram of Ce and O bonding of RECF and CNTs-CF multi-scale reinforcement

    图  5  CF、RECF和CNTs-CF多尺度增强体的SEM图像

    Figure  5.  SEM images of CF, RECF and CNTs-CF multi-scale reinforcement

    图  6  环氧树脂(EP)、CF/EP、RECF/EP和CNTs-CF/EP复合材料的力学性能

    Figure  6.  Mechanical properties of epoxy (EP), CF/EP, RECF/EP and CNTs-CF/EP composites

    图  7  CF/EP、RECF/EP和CNTs-CF/EP复合材料拉伸断裂截面的SEM图像

    Figure  7.  SEM images of tensile fracture cross section of CF/EP, RECF/EP and CNTs-CF/EP composites

    图  8  CF/EP、RECF/EP和CNTs-CF/EP复合材料的断裂机制模型

    Figure  8.  Fracture mechanism models of CF/EP, RECF/EP and CNTs-CF/EP composites

    表  1  CF、CeCl3改性的CF (RECF)和CNTs-CF多尺度增强体表面元素种类和原子分数

    Table  1.   Types and atomic fractions of surface elements of CF, CF modified by CeCl3 (RECF) and CNTs-CF multi-scale reinforcement at%

    ElementCFRECFCNTs-CF
    C 85.59 71.90 77.49
    N 3.21 5.91 3.39
    O 11.06 18.96 16.05
    Ce 0.14 3.23 3.07
    下载: 导出CSV
  • [1] RHEE I, KIM J H, PARK S H, et al. Mechanical and electrical properties of cement paste incorporated with pitch-based carbon fiber[J]. Carbon Letters,2017,23:22-29.
    [2] ANDIDEH M, ESFANDEH M. Effect of surface modification of electrochemically oxidized carbon fibers by grafting hydroxyl and amine functionalized hyperbranched polyurethanes on interlaminar shear strength of epoxy composites[J]. Carbon,2017,123:233-242. doi: 10.1016/j.carbon.2017.07.035
    [3] HU L, HECHT D S, GRÜNER G. Carbon nanotube thin films: Fabrication, properties, and applications[J]. Chemical Reviews,2010,110(10):5790-5844. doi: 10.1021/cr9002962
    [4] COLEMAN J N, KHAN U A, GUN'KO Y K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Advanced Materials,2006,18(6):689-706. doi: 10.1002/adma.200501851
    [5] 郑林宝, 王延相, 陈纪强, 等. CF-CNTs多尺度增强体的制备及CF-CNTs/环氧树脂复合材料力学性能[J]. 复合材料学报, 2017, 34(11):2428-2436.

    ZHENG L B, WANG Y X, CHEN J Q, et al. Preparation of CF-CNTs multi-scale reinforcement and mechanical properties of CF-CNTs/epoxy composites[J]. Acta Materiae Compositae Sinica,2017,34(11):2428-2436(in Chinese).
    [6] COLEMAN J N, KHAN U, BLAU W J, et al. Small but Strong: A review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon,2006,44(9):1624-1652.
    [7] QIAN H, GREENHALGH E S, SHAFFER M S P, et al. Carbon nanotube-based hierarchical composites: A review[J]. Journal of Materials Chemistry,2010,20(23):4751-4762.
    [8] KIM K J, KIM J, YU W R, et al. Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface[J]. Carbon,2013,54:258-267. doi: 10.1016/j.carbon.2012.11.037
    [9] GREEF N D, ZHANG L, MAGREZ A, et al. Direct growth of carbon nanotubes on carbon fibers: Effect of the CVD parameters on the degradation of mechanical properties of carbon fibers[J]. Diamond & Related Materials,2015,51:39-48.
    [10] BEDI H S, TIWARI M, AGNIHOTRI P K. Quantitative determination of size and properties of interphases in carbon nanotube-based multiscale composites[J]. Carbon,2018,132:181-190.
    [11] YAO X, JIANG J, XU C, et al. Improved interfacial properties of carbon fiber/epoxy composites through graphene oxide-assisted deposition of carbon nanotubes on carbon fiber surface[J]. Fibers and Polymers,2017,18(7):1323-1329. doi: 10.1007/s12221-017-1013-0
    [12] YAO X, GAO X, JIANG J, et al. Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites[J]. Composites Part B: Engineering,2018,132:170-177. doi: 10.1016/j.compositesb.2017.09.012
    [13] ZHENG H, LI Q, YU C, et al. The direct architecture of carbon fiber-carbon nanofiber hierarchical reinforcements for superior interfacial properties of CF/epoxy composites[J]. Polymers For Advanced Technologies,2019,30(3):620-630. doi: 10.1002/pat.4498
    [14] 梁馨, 方洲, 罗丽娟, 等. 碳纳米管改性对碳/环氧复合材料层间性能的影响[J]. 宇航材料工艺, 2016, 46(4):56-59, 76.

    LIANG X, FANG Z, LUO L J, et al. Effect of carbon nanotube modification on interlaminal properties of C/E composite[J]. Aerospace Materials and Technology,2016,46(4):56-59, 76(in Chinese).
    [15] 齐乐华, 舒扬, 李贺军, 等. 电泳沉积CNTs掺杂C/C复合材料的微观组织与弯曲性能[J]. 无机材料学报, 2016, 31(2):201-206.

    QI L H, SHU Y, LI H J, et al. Microstructures and flexural properties of C/C composites doped with CNTs by electrophoretic deposition[J]. Journal of Inorganic Materials,2016,31(2):201-206(in Chinese).
    [16] YAO H, SUI X, ZHAO Z, et al. Optimization of interfacial microstructure and mechanical properties of carbon fiber/epoxy composites via carbon nanotube sizing[J]. Applied Surface Science,2015,347:583-590. doi: 10.1016/j.apsusc.2015.04.146
    [17] PENG Q, HE X, LI Y, et al. Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly(amidoamine) for enhancing interfacial strength in carbon fiber composites[J]. Journal of Materials Chemistry,2012,22(13):5928-5931. doi: 10.1039/c2jm16723a
    [18] WU G, MA L, LIU L, et al. Interfacially reinforced methylphenyl silicone resin composites by chemically grafting multiwall carbon nanotubes onto carbon fibers[J]. Composites Part B: Engineering,2015,82:50-58.
    [19] WU G, MA L, LIU L, et al. Interface enhancement of carbon fiber reinforced methylphenyl silicone resin composites modified with silanized carbon nanotubes[J]. Materials & Design,2015,89:1343-1349.
    [20] ISLAM M S, DENG Y, TONG L, et al. Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: Towards next generation aerospace composites and energy storage applications[J]. Carbon,2016,96:701-710. doi: 10.1016/j.carbon.2015.10.002
    [21] MEI L, HE X, LI Y, et al. Grafting carbon nanotubes onto carbon fiber by use of dendrimers[J]. Materials Letters,2010,64(22):2505-2508. doi: 10.1016/j.matlet.2010.07.056
    [22] 王柏臣, 蔡安宁, 李俊杰, 等. HDI接枝碳纳米管/碳纤维混杂多尺度复合材料的制备和性能[J]. 沈阳航空航天大学学报, 2016, 33(4):48-54.

    WANG B C, CAI A N, LI J J, et al. Fabrication and properties of HDI grafted carbon nanotube/carbon fiber hybrid multi-scale composites[J]. Journal of Shenyang Aerospace University,2016,33(4):48-54(in Chinese).
    [23] CUI H, JIN Z, ZHENG D, et al. Effect of carbon fibers grafted with carbon nanotubes on mechanical properties of cement-based composites[J]. Construction and Building Materials,2018,181:713-720. doi: 10.1016/j.conbuildmat.2018.06.049
    [24] CHEN Q, PENG Q, ZHAO X, et al. Grafting carbon nanotubes densely on carbon fibers by poly(propylene imine) for interfacial enhancement of carbon fiber composites[J]. Carbon,2019,158:704-710.
    [25] SHANGGUAN Q Q, CHENG X H. Friction and wear of rare earths modified carbon fibers filled PTFE composite under dry sliding condition[J]. Applied Surface Science, 2007, 253(22): 9000-9006.
    [26] SUN Z Y, CHENG X H. Investigation of carbon nanotube-containing film on silicon substrates and its tribological behavior[J]. Applied Surface Science,2015,355:272-278. doi: 10.1016/j.apsusc.2015.07.130
    [27] JIANG M R, ZHOU H, CHENG X H. Effect of rare earth surface modification of carbon nanotubes on enhancement of interfacial bonding of carbon nanotubes reinforced epoxy matrix composites[J]. Journal of Materials Science,2019,54(14):10235-10248. doi: 10.1007/s10853-019-03631-4
    [28] 中国国家标准化管理委员会. 塑料拉伸性能的测定: GB/T 1040—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Determination of tensile properties of plastics: GB/T 1040—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [29] SARKAR S, BEKYAROVA E, NIYOGI S, et al. Diels-Alder chemistry of graphite and graphene: Graphene as diene and dienophile[J]. Journal of the American Chemical Society,2011,133(10):3324-3327. doi: 10.1021/ja200118b
    [30] 王怡, 冯展彬, 左洪礼, 等. 基于Diels-Alder反应的热可逆高导电硅橡胶/碳管复合材料的制备[J]. 高分子学报, 2019, 50(5):485-495.

    WANG Y, FENG Z B, ZUO H L, et al. Preparation of thermally reversible highly conductive silicone rubber/carbon tube composites based on Diels-Alder reaction[J]. Acta Polymerica Sinica,2019,50(5):485-495(in Chinese).
    [31] LIU W, ZHANG S, HAO L, et al. Fabrication of carbon nanotubes/carbon fiber hybrid fiber in industrial scale by sizing process[J]. Applied Surface Science,2013,284:914-920. doi: 10.1016/j.apsusc.2013.08.045
    [32] LI L Z, WANG J, LIU W B, et al. Remarkable improvement in interfacial shear strength of carbon fiber/epoxy composite by large-scare sizing with epoxy sizing agent containing amine-treated MWCNTs[J]. Polymer Composites,2018,39(8):2734-2742. doi: 10.1002/pc.24263
    [33] KÜLAH E, MAROT L, STEINER R, et al. Surface chemistry of rare-earth oxide surfaces at ambient conditions: Reactions with water and hydrocarbons[J]. Scientific Reports,2017,7:43369. doi: 10.1038/srep43369
    [34] 王帅, 钟宏, 张骞, 等. 烷氧羰基硫脲树脂与Ag+的螯合机理[J]. 材料导报, 2010, 24(10):26-28.

    WANG S, ZHONG H, ZHANG Q, et al. The chelate mechanism of alkoxy carbonyl thiourea resin and Ag+[J]. Materials Herald,2010,24(10):26-28(in Chinese).
    [35] 张一帆, 王晓钧, 盛浩强, 等. 短切玻纤/低密度不饱和聚酯树脂材料的力学性能[J]. 热固性树脂, 2017, 32(1):44-49, 54.

    ZHANG Y F, WANG X J, SHENG H Q, et al. Mechanical properties of the chopped glass fiber/low density unsaturated polyester resin materials[J]. Thermosetting Resin,2017,32(1):44-49, 54(in Chinese).
    [36] CHEN J X, TUO W Y, WAN C F, et al. Shear test method for and mechanical characteristics of short basalt fiber reinforced polymer composite materials[J]. Journal of Applied Polymer Science,2018,135(16):46078. doi: 10.1002/app.46078
    [37] 卓航, 李是卓, 韩恩林, 等. 高强高模聚酰亚胺纤维/环氧树脂复合材料力学性能与破坏机制[J]. 复合材料学报, 2019, 36(9):2101-2109.

    ZHUO H, LI S Z, HAN E L, et al. Mechanical properties and failure mechanism of high strength and high modulus polyimide fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2019,36(9):2101-2109(in Chinese).
    [38] 刘静, 陈勃翰, 李刚, 等. 激光改性纤维对其增强环氧树脂复合材料力学性能的影响[J]. 复合材料学报, 2017, 34(12):2708-2714.

    LIU J, CHEN B H, LI G, et al. Effect of laser modified fiber on mechanical properties of fibers reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica,2017,34(12):2708-2714(in Chinese).
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1421
  • HTML全文浏览量:  512
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 录用日期:  2020-07-29
  • 网络出版日期:  2020-08-06
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回