留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁氧体及其复合吸波材料的研究进展

赵佳 姚艳青 杨煊赫 柴春鹏

赵佳, 姚艳青, 杨煊赫, 等. 铁氧体及其复合吸波材料的研究进展[J]. 复合材料学报, 2020, 37(11): 2684-2699. doi: 10.13801/j.cnki.fhclxb.20200727.002
引用本文: 赵佳, 姚艳青, 杨煊赫, 等. 铁氧体及其复合吸波材料的研究进展[J]. 复合材料学报, 2020, 37(11): 2684-2699. doi: 10.13801/j.cnki.fhclxb.20200727.002
ZHAO Jia, YAO Yanqing, YANG Xuanhe, et al. Research progress of ferrite and its composite absorbing materials[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2684-2699. doi: 10.13801/j.cnki.fhclxb.20200727.002
Citation: ZHAO Jia, YAO Yanqing, YANG Xuanhe, et al. Research progress of ferrite and its composite absorbing materials[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2684-2699. doi: 10.13801/j.cnki.fhclxb.20200727.002

铁氧体及其复合吸波材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20200727.002
详细信息
    通讯作者:

    柴春鹏,博士,副教授,硕士生导师,研究方向为树脂基复合材料、吸波材料等 E-mail:chaicp@bit.edu.cn

  • 中图分类号: TB332

Research progress of ferrite and its composite absorbing materials

  • 摘要: 吸波材料既可减少电磁污染,又能达到军事装备隐身的目的,要求具有“薄、轻、宽、强”的特点。铁氧体吸波材料阻抗匹配较好,吸收强,研究早且使用多。但铁氧体吸波材料的密度大、吸收频带窄、热稳定性差的缺点限制了其应用。通过离子取代,设计微观形貌,与碳材料、高分子材料、MXene等进行复合,可有效提高铁氧体吸波材料的综合性能。本文总结了改善铁氧体吸波材料性能的主要方法及近几年的研究进展,并展望了进一步的研究方向。

     

  • 图  1  纳米Sr1–xLaxFe12O19粉末(6 mm)[14] (a)和Ni0.5Zn0.5NdxFe2–xO4纳米铁氧体(8.5 mm)[15] (b)的反射损耗曲线

    Figure  1.  Reflection loss curves of nano Sr1–xLaxFe12O19 powder (6 mm)[14] (a) and Ni0.5Zn0.5NdxFe2–xO4 nano ferrite (8.5 mm)[15] (b)

    图  2  Sr3(CuZn)xCo2(1−x)Fe24O41(x=0.4)片状粉晶的SEM图像[22] (a)、NixZn(1−x)Fe2O4(x=0.5)纳米纤维的FESEM图像[26] (b)、CoxFe3−xO4微球的FESEM图像[29] (c)及介孔NiCo2O4纳米结构的TEM图像[32] (d)

    Figure  2.  SEM image of Sr3(CuZn)xCo2(1−x)Fe24O41(x=0.4) flake powder crystal[22] (a), FESEM image of NixZn(1−x)Fe2O4 (x=0.5) nanofibers[26] (b), FESEM image of CoxFe3−xO4 microspheres[29] (c), and TEM image of mesoporous NiCo2O4 nanostructures[32] (d)

    图  3  Fe3O4/碳纳米管(CNTs)复合吸波材料的电磁波衰减机制(a)、随频率变化的Fe3O4和Fe3O4/CNTs复合材料的Z值(|输入阻抗Zin/自由空间阻抗Z0|) (b)、Fe3O4和Fe3O4/CNTs复合材料的电损耗正切角(c)[35]

    Figure  3.  Electromagnetic wave attenuation mechanism of Fe3O4/carbon nanotubes (CNTs) composite absorbing materials (a), Frequency-dependent Z values (|Input impedance Zin/free-space impedance Z0|) of Fe3O4 and Fe3O4/CNTs composites (b), Dielectric loss of Fe3O4 and Fe3O4/CNTs composites (c)[35]

    图  4  Co0.2Ni0.4Zn0.4Fe2O4/石墨烯(CNZF/GN)复合材料的微波损耗机制[40]

    Figure  4.  Microwave loss mechanism of Co0.2Ni0.4Zn0.4Fe2O4/ graphene (CNZF/GN) composites[40]

    图  5  N掺杂还原氧化石墨烯(NRGO)/Ni0.5Zn0.5Fe2O4复合材料的制备示意图(a)、SEM图像(b)和反射损耗曲线(c)[45]

    Figure  5.  Schematic of preparation (a), SEM image (b), reflection loss curves (c) of N-doped reduced graphene oxide(NRGO)/Ni0.5Zn0.5Fe2O4 composites[45]

    EAB—Effective absorption bandwidth; d—Thickness

    图  6  双层微波吸收材料反射损耗曲线: (a) 纳米碳纤维(CNFs)单层吸收剂; (b) 中空Ba2Co2Fe12O22微纤维(Co2Y-MFs)单层吸收剂; (c) CNFs作吸收层,Co2Y-MFs作匹配层的双层吸收剂; (d) Co2Y-MFs作吸收层,CNFs作匹配层的双层吸收剂[48]

    Figure  6.  Reflection loss curves of double-layer structural absorbers: (a) Carbon nanofibers (CNFs) monolayer absorbent; (b) Hollow Ba2Co2Fe12O22 microfibers (Co2Y-MFs) monolayer absorbent; (c) Double-layer absorbent that CNFs as absorption layer, Co2Y-MFs as matching layer; (d) Double-layer absorbent that Co2Y-MFs as absorption layer, CNFs as matching layer[48]

    d1, d2—Thickness of absorption layer (Layer 1) and matching layer (Layer 2), respectively; PEC—Perfect electric conductor

    图  7  Fe3O4@聚吡咯(PPy)复合微球的形成机制(a)、TEM图像(b)和反射损耗曲线(c)[55]

    Figure  7.  Formation mechanism (a), TEM image (b) and reflection loss curves (c)of Fe3O4@polypyrrole (PPy) composite microspheres[55]

    p-TSA—p-toluenesulfonic acid; PVA—Poly(vinyl alcohol); APS—Ammonium persulfate

    图  8  Ti3C2 MXene示意图[63]

    Figure  8.  Schematic illustration of Ti3C2 MXene[63]

    图  9  CoFe2O4-Ti3C2复合材料的示意图(a)、SEM图像(b)和微波吸收机制示意图(c)[63]

    Figure  9.  Schematic illustration (a), SEM image (b) and schematic of microwave absorption mechanism (c) of CoFe2O4-Ti3C2 composites[63]

    图  10  Ti3C2-Fe3O4-聚苯胺(PANI)复合材料的制备示意图[67] (a)和吸收机制[67] (b)及还原氧化石墨烯(RGO)-锶铁氧体(SF)-PANI复合材料[66] (c)和Ti3C2-Fe3O4-PANI复合材料[67] (d)的反射损失曲线

    Figure  10.  Schematic of preparation[67] (a) and absorption mechanism[67] (b) of Ti3C2-Fe3O4-polyaniline (PANI) composite and reflection loss curves of reduced graphene oxide (RGO)-strontium ferrite (SF)-PANI composite[66] (c) and Ti3C2-Fe3O4-PANI composite[67] (d)

    EM—Electromagnetic

    表  1  SrFe12–xRuxO19的吸收频率、频带宽、最小反射损耗(RL)、最佳厚度和矫顽力[13]

    Table  1.   Absorption frequency, bandwidth, minimum reflection loss (RL), optimum thickness and coercive force of SrFe12–xRuxO19[13]

    x00.51.01.31.5
    Absorption frequency/GHz 14.2−18 7.8−14.35 7.8−13.67 4.15−7.76
    Bandwidth/GHz 3.8 6.55 5.87 3.61
    Minimum RL/dB −17.6 −31.16 −32.0 −33.3
    Optimal thickness/mm 1.7 2.3 2.3 3.5
    Coercive force Hc/kOe 4.43 2.66 0.552 0.495 0.438
    Note: x is the content of Ru element.
    下载: 导出CSV
  • [1] 席嘉彬. 高性能碳基电磁屏蔽及吸波材料的研究[D]. 杭州: 浙江大学, 2018.

    XI Jiabin. Study on high performance carbon based electromagnetic shielding and absorbing materials[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
    [2] 王轩, 朱冬梅, 向耿, 等. 羰基铁吸收剂的研究进展[J]. 材料导报, 2014, 28(23):17-21, 27.

    WANG Xuan, ZHU Dongmei, XIANG Geng, et al. Research progress on carbonyl iron absorber[J]. Materials Review,2014,28(23):17-21, 27(in Chinese).
    [3] 陈国红, 周芳灵, 赵丽平, 等. 铁氧体磁性材料的吸波机理及改善吸波性能的研究进展[J]. 化工进展, 2015, 34(11):3965-3969.

    CHEN Guohong, ZHOU Fangling, ZHAO Liping, et al. Absorbing mechanism offerrite magneticmaterials and theresearch progress in improving the wave absorbing property[J]. Chemical Industry and Engineering Progress,2015,34(11):3965-3969(in Chinese).
    [4] 李黎明, 徐政. 吸波材料的微波损耗机理及结构设计[J]. 现代技术陶瓷, 2004, 25(2):31-34. doi: 10.3969/j.issn.1005-1198.2004.02.009

    LI Liming, XU Zheng. Physical mechanisms of the absorbing function in microwave-absorbing material and its composite design[J]. Advanced Ceramics,2004,25(2):31-34(in Chinese). doi: 10.3969/j.issn.1005-1198.2004.02.009
    [5] 刘强春. 微纳结构四氧化三铁复合材料的制备及吸波性能研究[D]. 合肥: 中国科学技术大学, 2013.

    LIU Qiangchun. Synthesis and microwave absorption properties of micro/nano-structred Fe3O4 composites[D]. Hefei: University of Science and Technology of China, 2013(in Chinese).
    [6] 庞建峰, 马喜君, 谢兴勇. 电磁吸波材料的研究进展[J]. 电子元件与材料, 2015, 34(2):7-12, 16.

    PANG Jianfeng, MA Xijun, XIE Xingyong. Research progress of microwave absorption materials[J]. Electronic Components and Materials,2015,34(2):7-12, 16(in Chinese).
    [7] 王国栋. 铁氧体吸波材料研究进展[J]. 科技风, 2019(29):166-167, 169.

    WANG Guodong. Research progress of ferrite absorbing materials[J]. Technology Wind,2019(29):166-167, 169(in Chinese).
    [8] 任庆国, 尹庆国, 刘玉杰, 等. 稀土掺杂钡铁氧体吸波涂层性能研究[J]. 光电技术应用, 2019, 34(4):24-28, 76. doi: 10.3969/j.issn.1673-1255.2019.04.005

    REN Qingguo, YIN Qingguo, LIU Yujie. Study on the properties of rare earth doped barium ferrite absorbing coating[J]. Electro-Optic Technology Application,2019,34(4):24-28, 76(in Chinese). doi: 10.3969/j.issn.1673-1255.2019.04.005
    [9] 翁兴媛, 陈宏伟, 马志军, 等. 不同稀土Nd3+掺杂含量对锰锌铁氧体吸波性能的影响[J]. 硅酸盐通报, 2019, 38(11):3392-3396.

    WENG Xingyuan, CHEN Hongwei, MA Zhijun, et al. Effect of different rare earth Nd3+ doping content on microwave absorbing property of Mn-Zn ferrite[J]. Bulletin of the Chinese Ceramic Society,2019,38(11):3392-3396(in Chinese).
    [10] 李应涛, 李生娟, 徐波, 等. Zn2+掺杂对NiFe2O4纳米颗粒吸波性能的增强[J]. 功能材料, 2017, 48(12):12209-12213.

    LI Yingtao, LI Shengjuan, XU Bo, et al. Reinforcement of Zn2+ dopant on the microwave absorbing properties of NiFe2O4 nanoparticles[J]. Journal of Functional Materials,2017,48(12):12209-12213(in Chinese).
    [11] REHMAN A, SHAUKAT S F, AKHTAR M N, et al. Evaluations of structural, magnetic and various dielectric parameters of Ni-substituted Zn2W-type hexagonal ferrites for high frequency (1–6 GHz) applications[J]. Ceramics International,2019,45(18):24202-24211. doi: 10.1016/j.ceramint.2019.08.129
    [12] YOU J H, CHOI S, PARK S Y, et al. Enhanced microwave absorption properties of Zn-substituted Y-type hexaferrites[J]. Journal of Magnetism and Magnetic Materials,2019,491:165640.
    [13] CHANG Y, ZHANG Y, LI L, et al. Microwave absorption in 0.1–18 GHz, magnetic and structural properties of SrFe12–xRuxO19 and BaFe12–xRuxO19[J]. Journal of Alloys and Compounds,2020,818:152930.
    [14] LIU Junliang, ZHANG Peng, ZHANG Xingkai, et al. Synthesis and microwave absorbing properties of La-doped Sr-hexaferrite nanopowders via sol-gel auto-combustion method[J]. Rare Metals,2017,36(9):704-710. doi: 10.1007/s12598-015-0671-6
    [15] QIAN Kun, YAO Zhengjun, LIN Haiyan, et al. The influence of Nd substitution in Ni-Zn ferrites for the improved microwave absorption properties[J]. Ceramics International,2020,46(1):227-235. doi: 10.1016/j.ceramint.2019.08.255
    [16] PUBBY K, NARANG S B. Ka band absorption properties of substituted nickel spinel ferrites: Comparison of open-circuit approach and short-circuit approach[J]. Ceramics International,2019,45(17):23673-23680. doi: 10.1016/j.ceramint.2019.08.081
    [17] 马志军, 赵海涛, 程亮, 等. 对比不同离子的掺杂对镍锌铁氧体电磁损耗性能的影响[J]. 人工晶体学报, 2018, 47(8):1642-1646. doi: 10.3969/j.issn.1000-985X.2018.08.025

    MA Zhijun, ZHAO Haitao, CHENG Liang, et al. Influence of doping different ions on the electromagnetic loss performance of nickel-zinc ferrite[J]. Journal of Synthetic Crystals,2018,47(8):1642-1646(in Chinese). doi: 10.3969/j.issn.1000-985X.2018.08.025
    [18] 马志军, 莽昌烨, 翁兴媛, 等. 基于纳米镍锌铁氧体以Co2+逐步替代Ni2+制备钴锌铁氧体及吸波性能对比[J]. 材料科学与工艺, 2018, 26(6):68-74.

    MA Zhijun, MANG Changye, WENG Xingyuan, et al. Preparation of cobalt-zinc ferrite based on nano-nickel-zinc ferrite by Co2+ instead of Ni2+ and comparison of their wave absorption properties[J]. Materials Science and Technology,2018,26(6):68-74(in Chinese).
    [19] ZHANG Deyuan, ZHANG Wenqiang, CAI Jun. Fabrication and electromagnetic properties of flake ferrite particles based on diatomite[J]. Journal of Magnetism and Magnetic Materials,2011,323(17):2305-2309. doi: 10.1016/j.jmmm.2011.04.012
    [20] 高海涛, 王建江, 许宝才, 等. 基于自反应喷射成形技术制备Mn-Zn铁氧体片状吸波剂[J]. 功能材料, 2016, 47(3):3191-3195. doi: 10.3969/j.issn.1001-9731.2016.03.035

    GAO Haitao, WANG Jianjiang, XU Baocai, et al. Preparation of Mn-Zn ferrite flake absorber by self-reactive spray forming technology[J]. Journal of Functional Materials,2016,47(3):3191-3195(in Chinese). doi: 10.3969/j.issn.1001-9731.2016.03.035
    [21] 王娜, 黄英, 何倩, 等. W型铁氧体BaCoZnRe0.1Fe15.9O27的制备及吸波性能研究[J]. 材料科学与工艺, 2013, 21(6):41-46.

    WANG Na, HUANG Ying, HE Qian, et al. Preparation and absorbing properties of W-type ferrites BaCoZnRe0.1Fe15.9O27[J]. Materials Science and Technology,2013,21(6):41-46(in Chinese).
    [22] 周克省, 程静, 邓联文, 等. Z型铁氧体Sr3(CuZn)xCo2(1–x)Fe24O41的微波吸收性能[J]. 中南大学学报(自然科学版), 2015, 46(5):1615-1621.

    ZHOU Kexing, CHENG Jing, DENG Lianwen, et al. Microwave absorbing properties of Z-type hexaferrite Sr3(CuZn)xCo2(1–x)Fe24O41[J]. Journal of Central South University(Science and Technology),2015,46(5):1615-1621(in Chinese).
    [23] 卢玉娥. 尖锥八面体Fe3O4及六角片状Ba(Me)xCo(2–2x)Fe16O27微波吸收性能[D]. 长沙: 中南大学, 2011.

    LU Yu’e. Microwave absorption properties of cusp octahedron Fe3O4 and hexagonal flaky Ba(Me)xCo(2–2x)Fe16O27[D]. Changsha: Central South University, 2011(in Chinese).
    [24] 赵芳, 王建江, 许宝才, 等. 锂锌铁氧体微纳米纤维的电纺制备及吸波性能[J]. 高等学校化学学报, 2017, 38(6):922-928.

    ZHAO Fang, WANG Jianjiang, XU Baocai, et al. Electrospinning fabrication and microwave absorption properties of lithium zinc ferrite micro/nanofibers[J]. Chemical Journal of Chinese Universities,2017,38(6):922-928(in Chinese).
    [25] XIANG Jun, HOU Zhirui, ZHANG Xueke, et al. Facile synthesis and enhanced microwave absorption properties of multiferroic Ni0.4Co0.2Zn0.4Fe2O4/BaTiO3 composite fibers[J]. Journal of Alloys and Compounds,2018,737:412-420. doi: 10.1016/j.jallcom.2017.12.047
    [26] HUANG Xiaogu, ZHANG Jing, LAI Min, et al. Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers[J]. Journal of Alloys and Compounds,2015,627(3):367-373.
    [27] 范润华, 侯传信, 孙凯, 等. 一种钡铁氧体中空纤维吸波粉体及其制备方法: 中国, 201810581269.1[P]. 2018-10-23.

    FAN Runhua, HOU Chuanxin, SUN Kai, et al. A kind of barium ferrite hollow fiber absorbing powder and its preparation method: China, 201810581269.1[P]. 2018-10-23(in Chinese).
    [28] WANG Zhihua, ZHAO Lin, WANG Puhong, et al. Low material density and high microwave-absorption performance of hollow strontium ferrite nanofibers prepared via coaxial electrospinning[J]. Journal of Alloys and Compounds,2016,687:541-547. doi: 10.1016/j.jallcom.2016.06.118
    [29] 纪仁龙, 张涛, 房洪杰, 等. 钴铁氧体亚微米球吸波性能与成分的关系研究[J]. 人工晶体学报, 2017, 46(4):746-752. doi: 10.3969/j.issn.1000-985X.2017.04.031

    JI Renlong, ZHANG Tao, FANG Hongjie, et al. Relation of microwave absorption property and ingredients of cobalt ferrite sub-micro spheres[J]. Journal of Synthetic Crystals,2017,46(4):746-752(in Chinese). doi: 10.3969/j.issn.1000-985X.2017.04.031
    [30] MANDAL D, GORAI A, MANDAL K. Electromagnetic wave trapping in NiFe2O4 nano-hollow spheres: an efficient microwave absorber[J]. Journal of Magnetism and Magnetic Materials,2019,485:43-48. doi: 10.1016/j.jmmm.2019.04.033
    [31] SUI Mingxu, SUN Xiaodong, LOU Hongfei, et al. Synthesis of hollow Fe3O4 particles via one-step solvothermal approach for microwave absorption materials: Effect of reactant concentration, reaction temperature and reaction time[J]. Journal of Materials Science: Materials in Electronics,2018,29(9):7539-7550. doi: 10.1007/s10854-018-8746-4
    [32] ZHAN Jing, YAO Yonglin, ZHANG Chuanfu, et al. Synthesis and microwave absorbing properties of quasione-dimensional mesoporous NiCo2O4 nanostructure[J]. Journal of Alloys and Compounds,2014,585:240-244. doi: 10.1016/j.jallcom.2013.09.091
    [33] YU Qiushan, SU Yuchang, TURSUN Rabigul, et al. Synthesis and characterization of low density porous nickel zinc ferrites[J]. RSC Advances,2019,9(23):13173-13181. doi: 10.1039/C9RA01076A
    [34] 祁亚利, 殷鹏飞, 张利民, 等. 铁氧体吸波复合材料研究进展[J]. 宇航材料工艺, 2019, 49(3):9-14.

    QI Yali, YIN Pengfei, ZHANG Limin, et al. Research advances of ferrite composites on microwave absorption[J]. Aerospace Materials & Technology,2019,49(3):9-14(in Chinese).
    [35] ZHU Lingyu, ZENG Xiaojun, CHEN Meng, et al. Controllable permittivity in 3D Fe3O4/CNTs network for remarkable microwave absorption performances[J]. RSC Advances,2017,7(43):26801-26808. doi: 10.1039/C7RA04456A
    [36] ZHANG B B, WANG P F, XU J C, et al. Microwave absorption and magnetic properties of cobalt ferrites/carbon nanotubes nanocomposites[J]. Nano,2015,10(5):1550070.
    [37] JIA Xilai, WANG Jie, ZHU Xiao, et al. Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption[J]. Journal of Alloys and Compounds,2017,697:138-146. doi: 10.1016/j.jallcom.2016.11.421
    [38] 龚璇, 丁冬. 碳纳米管表面包覆钡铁氧体的复合吸波材料性能研究[J]. 科教导刊, 2016(8):68-70.

    GONG Xuan, DING Dong. Study on the properties of composite absorbing materials of barium ferrite coated on carbon nanotubes[J]. The Guide of Science & Education,2016(8):68-70(in Chinese).
    [39] BIBI M, ABBAS S M, AHMAD N, et al. Microwaves absorbing characteristics of metal ferrite/multiwall carbon nanotubes nanocomposites in X-band[J]. Composites Part B: Engineering,2017,114:139-148. doi: 10.1016/j.compositesb.2017.01.034
    [40] LIU Peijiang, YAO Zhengjun, ZHOU Jintang, et al. Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance[J]. Journal of Materials Chemistry C,2016,4(41):9738-9749. doi: 10.1039/C6TC03518C
    [41] WANG Tieshi, LIU Zhaohong, LU Mingming, et al. Graphene-Fe3O4 nanohybrids: Synthesis and excellent electromagnetic absorption properties[J]. Journal of Applied Physics,2013,113(2):024314.
    [42] ZHANG Shenli, JIAO Qingze, HU Ju, et al. Vapor diffusion synthesis of rugby-shaped CoFe2O4/graphene composites as absorbing materials[J]. Journal of Alloys and Compounds,2015,630:195-201. doi: 10.1016/j.jallcom.2015.01.037
    [43] WANG Shanshan, ZHAO Yun, XUE Haoliang, et al. Preparation of flower-like CoFe2O4@graphene composites and their microwave absorbing properties[J]. Materials Letters,2018,223:186-189. doi: 10.1016/j.matlet.2018.04.050
    [44] WU Jiaming, YE Zhengmao, LIU Wenxiu, et al. The effect of GO loading on electromagnetic wave absorption properties of Fe3O4/reduced graphene oxide hybrids[J]. Ceramics International,2017,43(16):13146-13153. doi: 10.1016/j.ceramint.2017.07.007
    [45] SHU Ruiwen, ZHANG Jiabin, GUO Changlian, et al. Facile synthesis of nitrogen-doped reduced graphene oxide/nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band[J]. Chemical Engineering Journal,2020,384:123266. doi: 10.1016/j.cej.2019.123266
    [46] WANG Xiangyu, LU Yukai, ZHU Tao, et al. CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption[J]. Chemical Engineering Journal,2020,388:124317.
    [47] ZHAN Yingqing, LONG Zhihang, WAN Xinyi, et al. 3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance[J]. Applied Surface Science,2018,444:710-720. doi: 10.1016/j.apsusc.2018.03.006
    [48] GUAN Guangguang, ZHANG Kaiyin, GONG Lei, et al. Electromagnetic wave absorption enhancement of double-layer structural absorbers based on carbon nanofibers and hollow Co2Y hexaferrite microfibers[J]. Journal of Alloys and Compounds,2020,814:152302.
    [49] GHOLAMPOOR M, MOVASSAGH-ALANAGH F, SALIMKHANI H. Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method[J]. Solid State Sciences,2017,64:51-61. doi: 10.1016/j.solidstatesciences.2016.12.005
    [50] DANIEL B S S, MURTHY V S R. Nickel aluminide reinforced AlN/Al composites by pressureless infiltration[J]. Materials Letters,1998,37(6):334-339.
    [51] TRAVITZKY N A, GUTMANAS E Y, CLAUSSEN N. Mechanical properties of Al2O3/Si composites fabricated by pressureless infiltration technique[J]. Materials Letters,1997,33(1-2):47-50. doi: 10.1016/S0167-577X(97)00068-2
    [52] 熊旋, 曾国勋, 张海燕, 等. 掺镁六角晶系钡铁氧体/环氧树脂复合材料的吸波性能[J]. 电镀与涂饰, 2018, 37(19):885-889.

    XIONG Xuan, ZENG Guoxun, ZHANG Haiyan, et al. Microwave absorbing property of magnesium-doped Y-type barium hexaferrite/epoxy resin composite[J]. Electroplating & Finishing,2018,37(19):885-889(in Chinese).
    [53] WANG Wenjie, ZANG Chongguang, JIAO Qingjie. Fabrication and performance optimization of Mn-Zn ferrite/EP composites as microwave absorbing materials[J]. Chinese Physics B,2013,22(12):482-486.
    [54] ABBAS S M, DIXIT A K, CHATTERJEE R, et al. Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites[J]. Journal of Magnetism and Magnetic Materials,2007,309(1):20-24. doi: 10.1016/j.jmmm.2006.06.006
    [55] QIAO Mingtao, LEI Xingfeng, MA Yong, et al. Well-defined core-shell Fe3O4@polypyrrole composite microspheres with tunable shell thickness: Synthesis and their superior microwave absorption performance in the Ku band[J]. Industrial and Engineering Chemistry Research,2016,55(22):6263-6275. doi: 10.1021/acs.iecr.5b04814
    [56] LI Quanfang, WANG Xiangyuan, ZHANG Zilong, et al. In situ synthesis of core-shell nanocomposites based on polyaniline/Ni-Zn ferrite and enhanced microwave absorbing properties[J]. Journal of Materials Science: Materials in Electronics,2019,30(23):20515-20524. doi: 10.1007/s10854-019-02410-w
    [57] CHEN Peng, JIANG Linwen, YANG Shanshan, et al. Facile synthesis and microwave-absorption properties of organic-inorganic CoFe2O4/polyaniline nanocomposites with embedded structure[J]. Journal of Nanoscience and Nanotechnology,2019,20(3):1756-1764.
    [58] 李琳, 姚正军, 周金堂. 聚苯胺纳米纤维/锂锌铁氧体复合吸波材料的制备与性能[J]. 复合材料学报, 2016, 33(4):814-820.

    LI Lin, YAO Zhengjun, ZHOU Jintang. Preparation and property of polyaniline nanofibers/lithium zinc ferrite composite absorbents[J]. Acta Materiae Compositae Sinica,2016,33(4):814-820(in Chinese).
    [59] LI Lindong, LIU Sida, LU Longfei. Synthesis and significantly enhanced microwave absorption properties of cobalt ferrite hollow microspheres with protrusions/polythiophene composites[J]. Journal of Alloys and Compounds,2017,722:158-165. doi: 10.1016/j.jallcom.2017.06.029
    [60] 淳道勇. 新型MXene复合吸波材料研究进展[J]. 广州化工, 2019, 47(15):14-17. doi: 10.3969/j.issn.1001-9677.2019.15.011

    CHUN Daoyong. Research progress on MXene microwave absorption composite materials[J]. Guangzhou Chemical Industry,2019,47(15):14-17(in Chinese). doi: 10.3969/j.issn.1001-9677.2019.15.011
    [61] 贺君, 颜铄清, 邓永和, 等. 一种片层状MXene负载钴铁氧体的复合吸波材料及其制备方法: 中国, 201910644729.5[P]. 2018-07-06.

    DENG Jun, YAN Shuoqing, DENG Yonghe, et al. A composite microwave absorbing material of layered mxene supported cobalt ferrite and its preparation method: China, 201910644729.5[P]. 2018-07-06(in Chinese).
    [62] 徐晨, 赵国梁, 周阳. 一种复合吸波材料及其制备方法: 中国, 201810244578.X[P]. 2018-07-06.

    XU Chen, ZHAO Guoliang, ZHOU Yang. A composite microwave absorbing material and a preparation method thereof: China, 201810244578.X[P]. 2018-07-06(in Chinese).
    [63] HE Jun, LIU Sheng, DENG Lianwen, et al. Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites[J]. Applied Surface Science,2020,504:144210. doi: 10.1016/j.apsusc.2019.144210
    [64] ZHANG Xiang, WANG Hehe, HU Rui, et al. Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles[J]. Applied Surface Science,2019,484:383-391.
    [65] SHAN Dongyong, HE Jun, DENG Lianwen, et al. The underlying mechanisms of enhanced microwave absorption performance for the NiFe2O4-decorated Ti3C2Tx MXene[J]. Results in Physics,2019,15:102750. doi: 10.1016/j.rinp.2019.102750
    [66] LUO Juhua, SHEN Pan, YAO Wei, et al. Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites[J]. Nanoscale Research Letters,2016,11(1):141.
    [67] WANG Yan, GAO Xiang, ZHANG Lijuan, et al. Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber[J]. Applied Surface Science,2019,480(November 2018):830.
    [68] 剡刚, 王岩, 黄烁, 等. 石墨烯/MnFe2O4/PPy复合物的制备及其电磁性能研究[J]. 西安工业大学学报, 2016, 36(3):182-186.

    YAN Gang, WANG Yan, HUANG Shuo, et al. Synthesis of graphene/MnFe2O4/PPy composites and their electromagnetic properties[J]. Journal of Xi’an Technological University,2016,36(3):182-186(in Chinese).
    [69] YANG Haibo, DAI Jingjing, LIU Xiao, et al. Layered PVB/Ba3Co2Fe24O41/Ti3C2 Mxene composite: Enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range[J]. Materials Chemistry and Physics,2017,200:179-186. doi: 10.1016/j.matchemphys.2017.05.057
    [70] LI Lindong, CHEN Xingliang, QI Shuhua. Preparation and microwave absorbing property of Ni-Zn ferrite-coated hollow glass microspheres with polythiophene[J]. Journal of Magnetism and Magnetic Materials,2016,417:349-354. doi: 10.1016/j.jmmm.2016.05.101
    [71] WANG Xingwei, YAN Hongxia, XUE Rong, et al. A polypyrrole/CoFe2O4/hollow glass microspheres three-layer sandwich structure microwave absorbing material with wide absorbing bandwidth and strong absorbing capacity[J]. Journal of Materials Science: Materials in Electronics,2016,28(1):519-525.
    [72] MA Wei, YANG Rui, YANG Zenghui, et al. Synthesis of reduced graphene oxide/zinc ferrite/nickel nanohybrids: As a lightweight and high-performance microwave absorber in the low frequency[J]. Journal of Materials Science: Materials in Electronics,2019,30(20):18496-18505.
    [73] WANG Lixi, GUAN Yongkang, QIU Xu, et al. Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal-organic framework[J]. Chemical Engineering Journal,2017,326:945-955. doi: 10.1016/j.cej.2017.06.006
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  3364
  • HTML全文浏览量:  1130
  • PDF下载量:  498
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-21
  • 录用日期:  2020-07-08
  • 网络出版日期:  2020-07-27
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回