留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti3SiC2/Cu复合材料的制备与摩擦磨损性能

刘可心 王蕾 杨晨 金松哲

刘可心, 王蕾, 杨晨, 等. Ti3SiC2/Cu复合材料的制备与摩擦磨损性能[J]. 复合材料学报, 2020, 37(11): 2844-2852. doi: 10.13801/j.cnki.fhclxb.20200723.002
引用本文: 刘可心, 王蕾, 杨晨, 等. Ti3SiC2/Cu复合材料的制备与摩擦磨损性能[J]. 复合材料学报, 2020, 37(11): 2844-2852. doi: 10.13801/j.cnki.fhclxb.20200723.002
LIU Kexin, WANG Lei, YANG Chen, et al. Preparation and tribological properties of Ti3SiC2/Cu composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2844-2852. doi: 10.13801/j.cnki.fhclxb.20200723.002
Citation: LIU Kexin, WANG Lei, YANG Chen, et al. Preparation and tribological properties of Ti3SiC2/Cu composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2844-2852. doi: 10.13801/j.cnki.fhclxb.20200723.002

Ti3SiC2/Cu复合材料的制备与摩擦磨损性能

doi: 10.13801/j.cnki.fhclxb.20200723.002
基金项目: 吉林省科技发展计划基金(20180201077GX);吉林省高教学会高教科研课题(JGJX2019C21)
详细信息
    通讯作者:

    金松哲,博士,教授,硕士生导师,研究方向为金属基复合材料  E-mail:szjin@126.com

  • 中图分类号: TB331

Preparation and tribological properties of Ti3SiC2/Cu composites

  • 摘要: 以Ti3SiC2陶瓷粉和Cu粉作为原料,采用放电等离子烧结(SPS)工艺制备Ti3SiC2/Cu块体复合材料,研究不同Ti3SiC2添加含量及烧结温度对Ti3SiC2/Cu复合材料的组织、致密度和显微硬度的影响,研究SPS后Ti3SiC2/Cu复合材料的摩擦磨损性能。研究表明:采用SPS工艺制备的Ti3SiC2/Cu复合材料的Ti3SiC2在Cu中分布均匀,但随着Ti3SiC2含量的增加和烧结温度的升高,组织中出现团聚趋势,部分Ti3SiC2与Cu在界面处发生互溶现象,互溶增强了Ti3SiC2与基体的结合能力;Ti3SiC2含量和烧结温度对Ti3SiC2/Cu复合材料的致密度和显微硬度影响较大,当烧结温度为900℃时,Ti3SiC2/Cu复合材料的致密度达到99.7%,接近完全致密,Ti3SiC2/Cu复合材料的硬度较纯Cu提高了2倍左右;对于不同Ti3SiC2含量的Ti3SiC2/Cu复合材料的磨损机制也有所差异,当Ti3SiC2含量较低时(1vol%~5vol%),磨损机制为磨粒磨损和黏着磨损;随着Ti3SiC2含量的增加(10vol%~15vol%),Ti3SiC2发挥了本身的自润滑性,Ti3SiC2/Cu复合材料的摩擦磨损性能有所改善,磨损机制转为犁削磨损和轻微黏着磨损;当Ti3SiC2含量增加到20vol%时,Ti3SiC2/Cu复合材料的磨损表面变得均匀而平整,表明Ti3SiC2/Cu复合材料的耐磨性提高。

     

  • 图  1  不同Ti3SiC2含量的Ti3SiC2/Cu复合材料在烧结温度为900℃时的金相照片

    Figure  1.  Optical micrographs of Ti3SiC2/Cu composites with different contents of Ti3SiC2 at sintering temperature of 900℃ ((a) 0vol%; (b) 1vol%; (c) 5vol%; (d) 10vol%; (e) 15vol%; (f) 20vol%)

    图  2  烧结温度为900℃时Ti3SiC2含量为15vol%的Ti3SiC2/Cu复合材料及其Ⅰ、Ⅱ区放大的金相照片

    Figure  2.  Optical micrographs of Ti3SiC2/Cu composite with Ti3SiC2 concent of 15vol% at sintering temperature of 900℃ and high magnification of Ⅰ and Ⅱ region

    图  3  烧结温度分别为850℃ (a)和900℃ (b)时Ti3SiC2含量为15vol%的Ti3SiC2/Cu复合材料的TEM图像

    Figure  3.  TEM images of Ti3SiC2/Cu composite with Ti3SiC2 concent of 15vol% at sintering temperature of 850℃ (a) and 900℃ (b)

    图  4  Ti3SiC2含量和烧结温度对Ti3SiC2/Cu复合材料致密度和显微硬度的影响

    Figure  4.  Effect of Ti3SiC2 content and sintering temperature on relative density and Vickers hardness of Ti3SiC2/Cu composites

    图  5  Ti3SiC2含量对Ti3SiC2/Cu复合材料磨损率(a)和摩擦系数(b)影响

    Figure  5.  Effect of Ti3SiC2 content on wear rate (a) and friction coefficient (b) of Ti3SiC2/Cu composites

    图  6  烧结温度为850℃时纯Cu磨损表面的SEM图像

    Figure  6.  SEM images of worn surface of pure Cu at sintering temperature of 850℃

    图  7  烧结温度为850℃时不同Ti3SiC2含量的Ti3SiC2/Cu复合材料磨损表面的SEM图像及EDX图谱: (a) 1vol%; (b) 5vol%; (c) 10vol%; (d) 15vol%;(e) 20vol%; (f)15vol% Ti3SiC2/Cu磨损表面的EDX图谱

    Figure  7.  SEM images and EDX spectrum of worn surface of Ti3SiC2/Cu composites with different contents of Ti3SiC2 at sintering temperature of 850℃: (a) 1vol%; (b) 5vol%; (c) 10vol%; (d) 15vol%; (e) 20vol%; (f) EDX spectrum of worn surface of 15vol% Ti3SiC2/Cu

  • [1] RADHIKA N, SAM M. Tribological and wear performance of centrifuge cast functional graded copper-based composite at dry sliding conditions[J]. Journal of Central South University,2019,26(11):2961-2973. doi: 10.1007/s11771-019-4228-y
    [2] YU H Y, FANG W, CHANG R B, et al. Modifying element diffusion pathway by transition layer structure in high-entropy alloy particle reinforced Cu matrix composites[J]. Transactions of Nonferrous Metals Society of China,2019,29(11):2331-2339. doi: 10.1016/S1003-6326(19)65139-3
    [3] 张胜利, 国秀花, 宋克兴, 等. 多粒径TiB2颗粒增强铜基复合材料的制备与载流摩擦磨损性能[J]. 复合材料学报, 2019, 36(10):2348-2356.

    ZHANG S L, GUO X H, SONG K X, et al. Preparation and electrical wear characteristics of copper matrix composites reinforced with mixing sized TiB2 particles[J]. Acta Materiae Compositae Sinica,2019,36(10):2348-2356(in Chinese).
    [4] 霍生伟, 李长生, 唐华, 等. NbSe2/Cu新型自润滑复合材料制备及其摩擦学性能[J]. 复合材料学报, 2013, 30(4):121-127.

    HUO S W, LI C S, TANG H, et al. Preparation and tribological properties of copper matrix solid selflubricant composites reinforced with NbSe2 sheets[J]. Acta Materiae Compositae Sinica,2013,30(4):121-127(in Chinese).
    [5] 赵翔, 郝俊杰, 于潇, 等. Al2O3颗粒镀铜对铜基粉末冶金摩擦材料Al2O3-Fe-Sn-C/Cu摩擦磨损性能的影响[J]. 复合材料学报, 2015, 32(2):451-457.

    ZHAO X, HAO J J, YU X, et al. Effects of Cu-plating for Al2O3 particles on friction and wear properties of Cu-based powder metallurgy friction material Al2O3-Fe-Sn-C/Cu[J]. Acta Materiae Compositae Sinica,2015,32(2):451-457(in Chinese).
    [6] 王喆, 宋晓晨, 杨耀国, 等. 基于铜材料非酶葡萄糖传感器的研究进展[J]. 东北电力大学学报, 2018, 38(1):95-100. doi: 10.3969/j.issn.1005-2992.2018.01.015

    WANG Z, SONG X C, YANG Y G, et al. Recent progress of research of non-enzymatic glucose sensors based on copper[J]. Journal of Northeast Electric Power University (Natural Science Edition),2018,38(1):95-100(in Chinese). doi: 10.3969/j.issn.1005-2992.2018.01.015
    [7] ZHANG H B, SHEN S Y, WANG Z H, et al. Oxidation behavior of porous Ti3SiC2 prepared by reactive synthesis[J]. Transactions of Nonferrous Metals Society of China,2018,28(9):1774-1783. doi: 10.1016/S1003-6326(18)64821-6
    [8] ZHANG J B, LIU W Y, JIN Y M, et al. Study of the interfacial reaction between Ti3SiC2 particles and Al matrix[J]. Journal of Alloys and Compounds,2018,738:1-9. doi: 10.1016/j.jallcom.2017.12.123
    [9] ATAZADEH N, HEYDARI M S, BAHARVANDI H R, et al. Reviewing the effects of different additives on the synthesis of the Ti3SiC2 MAX phase by mechanical alloying technique[J]. International Journal of Refractory Metals and Hard Materials,2016,61:67-78. doi: 10.1016/j.ijrmhm.2016.08.003
    [10] 肖琪聃, 周峰, 吴珊. 无压熔渗制备TiC/Ti3SiC2复合材料高速载流摩擦磨损性能[J]. 复合材料学报, 2018, 35(10):2832-2840.

    XIAO Q D, ZHOU F, WU S. Current-carrying friction and wear characteristics of TiC/Ti3SiC2 composites under high speed by infiltration sintering[J]. Acta Materiae Compositae Sinica,2018,35(10):2832-2840(in Chinese).
    [11] 田养利, 尹洪峰, 陈金学, 等. 陶瓷添加物对Ti3SiC2基复合材料抗氧化性的影响[J]. 复合材料学报, 2016, 33(2):350-357.

    TIAN Y L, YIN H F, CHEN J X, et al. Effects of ceramic additives on oxidation resistance of Ti3SiC2 matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(2):350-357(in Chinese).
    [12] 孙建军, 周洋, 路金蓉, 等. Ti3SiC2/Cu复合材料的制备与性能[J]. 粉末冶金材料科学与工程, 2011, 16(4):587-590. doi: 10.3969/j.issn.1673-0224.2011.04.019

    SUN J J, ZHOU Y, LU J R, et al. Preparation and properties of Ti3SiC2/Cu composites[J]. Materials Science and Engineering of Powder Metallurgy,2011,16(4):587-590(in Chinese). doi: 10.3969/j.issn.1673-0224.2011.04.019
    [13] CHEN H Y, WANG X C, FU L, et al. Effects of surface microstructure on the active element content and wetting behavior of brazing filler metal during brazing Ti3SiC2 ceramic and Cu[J]. Vacuum,2018,156:256-263. doi: 10.1016/j.vacuum.2018.07.043
    [14] ZHANG P, LEONGAI T W, WANG A, et al. Arc erosion behavior of Cu-Ti3SiC2 cathode and anode[J]. Vacuum,2017,141:235-242. doi: 10.1016/j.vacuum.2017.04.023
    [15] DANG W T, REN S F, ZHOU J S, et al. Interdiffusion and reaction in bimetallic Cu-Sn thin films[J]. Ceramics International,2016,42(8):9972-9980. doi: 10.1016/j.ceramint.2016.03.099
    [16] CHEN H Y, PENG J K, FU L. Effects of interfacial reaction and atomic diffusion on the mechanical property of Ti3SiC2 ceramic to Cu brazing joints[J]. Vacuum,2016,130:56-62. doi: 10.1016/j.vacuum.2016.05.002
    [17] XIE H, LEONGAI T W, ZHANG P, et al. Erosion of Cu-Ti3SiC2 composite under vacuum arc[J]. Vacuum,2015,114:26-32. doi: 10.1016/j.vacuum.2014.12.016
    [18] 卢棋, 何国球, 杨洋, 等. 新型铜钛硅碳石墨合金材料的摩擦磨损性能[J]. 材料研究学报, 2015, 29(3):216-220.

    LU Q, HE G Q, YANG Y, et al. Friction and wear property of a new Cu-based Cu/Ti3SiC2/C composite[J]. Chinese Journal of Materials Research,2015,29(3):216-220(in Chinese).
    [19] 许小龙, 倪东惠, 张宝霞, 等. 烧结温度和复压复烧对温压制备Cu-Ti3SiC2材料的影响[J]. 粉末冶金材料科学与工程, 2014, 19(2):197-204. doi: 10.3969/j.issn.1673-0224.2014.02.006

    XU X L, NI D H, ZHANG B X, et al. Effect of sinter temperature and double-press double-sinter on warm compaction prepared pure Cu-Ti3SiC2 composite[J]. Materials Science and Engineering of Powder Metallurgy,2014,19(2):197-204(in Chinese). doi: 10.3969/j.issn.1673-0224.2014.02.006
    [20] 贲云飞, 徐桂芳, 杨娟, 等. Cu/Ti3SiC2复合材料的制备及其磨损性能研究[J]. 热加工工艺, 2012, 41(14):128-131. doi: 10.3969/j.issn.1001-3814.2012.14.036

    BEN Y F, XU G F, YANG J, et al. Preparation of Cu/Ti3SiC2 and its wear property[J]. Hot Working Technology,2012,41(14):128-131(in Chinese). doi: 10.3969/j.issn.1001-3814.2012.14.036
    [21] FARIAS I, OLMOS L, JIMÉNEZ O, et al. Wear modes in open porosity titanium matrix composites with TiC addition processed by spark plasma sintering[J]. Transactions of Nonferrous Metals Society of China,2019,29(8):1653-1664. doi: 10.1016/S1003-6326(19)65072-7
    [22] CHEN H S, NIE H H, ZHOU J, et al. Microstructure and mechanical properties of B4C/6061Al neutron absorber composite tube fabricated by spark plasma sintering and hot spinning[J]. Journal of Nuclear Materials,2019,517:393-400. doi: 10.1016/j.jnucmat.2018.12.048
    [23] 张兴旺, 孟凡爱, 刘嘉玲, 等. Ti3SiC2替代石墨对铜基摩擦材料性能的影响[J]. 粉末冶金技术, 2014, 32(1):36-42. doi: 10.3969/j.issn.1001-3784.2014.01.007

    ZHANG X W, MENG F A, LIU J L, et al. Effect of Ti3SiC2 replacing graphite on the properties of copper based fraction materials[J]. Powder Metallurgy Technology,2014,32(1):36-42(in Chinese). doi: 10.3969/j.issn.1001-3784.2014.01.007
    [24] ZHOU Y C, GU W L. Chemical reaction and stability of Ti3SiC2 in Cu during high-temperature processing of Cu/Ti3SiC2 composites[J]. International Journal of Materials Research,2004,95(1):50-56.
    [25] OLESINSKI R W, ABBASCHIAN G J. The Cu-Si (copper-silicon) system[J]. Bulletin of Alloy Phase Diagrams,1986,7(2):170-178.
  • 加载中
图(7)
计量
  • 文章访问数:  1337
  • HTML全文浏览量:  454
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-20
  • 修回日期:  2020-07-15
  • 录用日期:  2020-07-21
  • 网络出版日期:  2020-07-23
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回