Preparation and tribological properties of Ti3SiC2/Cu composites
-
摘要: 以Ti3SiC2陶瓷粉和Cu粉作为原料,采用放电等离子烧结(SPS)工艺制备Ti3SiC2/Cu块体复合材料,研究不同Ti3SiC2添加含量及烧结温度对Ti3SiC2/Cu复合材料的组织、致密度和显微硬度的影响,研究SPS后Ti3SiC2/Cu复合材料的摩擦磨损性能。研究表明:采用SPS工艺制备的Ti3SiC2/Cu复合材料的Ti3SiC2在Cu中分布均匀,但随着Ti3SiC2含量的增加和烧结温度的升高,组织中出现团聚趋势,部分Ti3SiC2与Cu在界面处发生互溶现象,互溶增强了Ti3SiC2与基体的结合能力;Ti3SiC2含量和烧结温度对Ti3SiC2/Cu复合材料的致密度和显微硬度影响较大,当烧结温度为900℃时,Ti3SiC2/Cu复合材料的致密度达到99.7%,接近完全致密,Ti3SiC2/Cu复合材料的硬度较纯Cu提高了2倍左右;对于不同Ti3SiC2含量的Ti3SiC2/Cu复合材料的磨损机制也有所差异,当Ti3SiC2含量较低时(1vol%~5vol%),磨损机制为磨粒磨损和黏着磨损;随着Ti3SiC2含量的增加(10vol%~15vol%),Ti3SiC2发挥了本身的自润滑性,Ti3SiC2/Cu复合材料的摩擦磨损性能有所改善,磨损机制转为犁削磨损和轻微黏着磨损;当Ti3SiC2含量增加到20vol%时,Ti3SiC2/Cu复合材料的磨损表面变得均匀而平整,表明Ti3SiC2/Cu复合材料的耐磨性提高。
-
关键词:
- 导电陶瓷 /
- Ti3SiC2/Cu /
- 复合材料 /
- 放电等离子烧结(SPS) /
- 摩擦磨损
Abstract: The Ti3SiC2/Cu composites were prepared by spark plasma sintering (SPS) process using Ti3SiC2 ceramic powder and Cu powder as raw materials. The effect of content of Ti3SiC2 and sintering temperature on the microstructure, relative density and hardness of Ti3SiC2/Cu composites were investigated, and the friction and wear properties of the Ti3SiC2/Cu composites after SPS were also studied. The results show that Ti3SiC2 are evenly distributed in Cu matrix for the Ti3SiC2/Cu composites prepared by SPS process. But with the increase of Ti3SiC2 content and sintering temperature, agglomeration trend appears in the tissue, and some Ti3SiC2 and Cu miscibility at the interface enhances the ability to bind to the matrix. The Ti3SiC2 content and sintering temperature have a great influence on the density and microhardness of the Ti3SiC2/Cu composites. When the sintering temperature is 900℃, the density of the Ti3SiC2/Cu composites reaches 99.7%, which is close to complete density. The hardness of the Ti3SiC2/Cu composites is about 2 times higher than that of pure Cu. The wear mechanism of Ti3SiC2/Cu composites with different Ti3SiC2 contents is also different. When the content of Ti3SiC2is low (1vol%–5vol%), the wear mechanism is abrasive wear and adhesive wear. With the increase of Ti3SiC2 content (10vol%–15vol%), it gives play to its self-lubricity, the friction and wear properties of the Ti3SiC2/Cu composites are improved, and the wear mechanism is changed to plough cutting and slight adhesive wear. With the content of Ti3SiC2 further increases to 20vol%, the wear surface becomes uniform and flat, indicating that the wear resistance of the Ti3SiC2/Cu composites is enhanced.-
Key words:
- conductive ceramics /
- Ti3SiC2/Cu /
- composites /
- spark plasma sintering (SPS) /
- frictional wear
-
图 7 烧结温度为850℃时不同Ti3SiC2含量的Ti3SiC2/Cu复合材料磨损表面的SEM图像及EDX图谱: (a) 1vol%; (b) 5vol%; (c) 10vol%; (d) 15vol%;(e) 20vol%; (f)15vol% Ti3SiC2/Cu磨损表面的EDX图谱
Figure 7. SEM images and EDX spectrum of worn surface of Ti3SiC2/Cu composites with different contents of Ti3SiC2 at sintering temperature of 850℃: (a) 1vol%; (b) 5vol%; (c) 10vol%; (d) 15vol%; (e) 20vol%; (f) EDX spectrum of worn surface of 15vol% Ti3SiC2/Cu
-
[1] RADHIKA N, SAM M. Tribological and wear performance of centrifuge cast functional graded copper-based composite at dry sliding conditions[J]. Journal of Central South University,2019,26(11):2961-2973. doi: 10.1007/s11771-019-4228-y [2] YU H Y, FANG W, CHANG R B, et al. Modifying element diffusion pathway by transition layer structure in high-entropy alloy particle reinforced Cu matrix composites[J]. Transactions of Nonferrous Metals Society of China,2019,29(11):2331-2339. doi: 10.1016/S1003-6326(19)65139-3 [3] 张胜利, 国秀花, 宋克兴, 等. 多粒径TiB2颗粒增强铜基复合材料的制备与载流摩擦磨损性能[J]. 复合材料学报, 2019, 36(10):2348-2356.ZHANG S L, GUO X H, SONG K X, et al. Preparation and electrical wear characteristics of copper matrix composites reinforced with mixing sized TiB2 particles[J]. Acta Materiae Compositae Sinica,2019,36(10):2348-2356(in Chinese). [4] 霍生伟, 李长生, 唐华, 等. NbSe2/Cu新型自润滑复合材料制备及其摩擦学性能[J]. 复合材料学报, 2013, 30(4):121-127.HUO S W, LI C S, TANG H, et al. Preparation and tribological properties of copper matrix solid selflubricant composites reinforced with NbSe2 sheets[J]. Acta Materiae Compositae Sinica,2013,30(4):121-127(in Chinese). [5] 赵翔, 郝俊杰, 于潇, 等. Al2O3颗粒镀铜对铜基粉末冶金摩擦材料Al2O3-Fe-Sn-C/Cu摩擦磨损性能的影响[J]. 复合材料学报, 2015, 32(2):451-457.ZHAO X, HAO J J, YU X, et al. Effects of Cu-plating for Al2O3 particles on friction and wear properties of Cu-based powder metallurgy friction material Al2O3-Fe-Sn-C/Cu[J]. Acta Materiae Compositae Sinica,2015,32(2):451-457(in Chinese). [6] 王喆, 宋晓晨, 杨耀国, 等. 基于铜材料非酶葡萄糖传感器的研究进展[J]. 东北电力大学学报, 2018, 38(1):95-100. doi: 10.3969/j.issn.1005-2992.2018.01.015WANG Z, SONG X C, YANG Y G, et al. Recent progress of research of non-enzymatic glucose sensors based on copper[J]. Journal of Northeast Electric Power University (Natural Science Edition),2018,38(1):95-100(in Chinese). doi: 10.3969/j.issn.1005-2992.2018.01.015 [7] ZHANG H B, SHEN S Y, WANG Z H, et al. Oxidation behavior of porous Ti3SiC2 prepared by reactive synthesis[J]. Transactions of Nonferrous Metals Society of China,2018,28(9):1774-1783. doi: 10.1016/S1003-6326(18)64821-6 [8] ZHANG J B, LIU W Y, JIN Y M, et al. Study of the interfacial reaction between Ti3SiC2 particles and Al matrix[J]. Journal of Alloys and Compounds,2018,738:1-9. doi: 10.1016/j.jallcom.2017.12.123 [9] ATAZADEH N, HEYDARI M S, BAHARVANDI H R, et al. Reviewing the effects of different additives on the synthesis of the Ti3SiC2 MAX phase by mechanical alloying technique[J]. International Journal of Refractory Metals and Hard Materials,2016,61:67-78. doi: 10.1016/j.ijrmhm.2016.08.003 [10] 肖琪聃, 周峰, 吴珊. 无压熔渗制备TiC/Ti3SiC2复合材料高速载流摩擦磨损性能[J]. 复合材料学报, 2018, 35(10):2832-2840.XIAO Q D, ZHOU F, WU S. Current-carrying friction and wear characteristics of TiC/Ti3SiC2 composites under high speed by infiltration sintering[J]. Acta Materiae Compositae Sinica,2018,35(10):2832-2840(in Chinese). [11] 田养利, 尹洪峰, 陈金学, 等. 陶瓷添加物对Ti3SiC2基复合材料抗氧化性的影响[J]. 复合材料学报, 2016, 33(2):350-357.TIAN Y L, YIN H F, CHEN J X, et al. Effects of ceramic additives on oxidation resistance of Ti3SiC2 matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(2):350-357(in Chinese). [12] 孙建军, 周洋, 路金蓉, 等. Ti3SiC2/Cu复合材料的制备与性能[J]. 粉末冶金材料科学与工程, 2011, 16(4):587-590. doi: 10.3969/j.issn.1673-0224.2011.04.019SUN J J, ZHOU Y, LU J R, et al. Preparation and properties of Ti3SiC2/Cu composites[J]. Materials Science and Engineering of Powder Metallurgy,2011,16(4):587-590(in Chinese). doi: 10.3969/j.issn.1673-0224.2011.04.019 [13] CHEN H Y, WANG X C, FU L, et al. Effects of surface microstructure on the active element content and wetting behavior of brazing filler metal during brazing Ti3SiC2 ceramic and Cu[J]. Vacuum,2018,156:256-263. doi: 10.1016/j.vacuum.2018.07.043 [14] ZHANG P, LEONGAI T W, WANG A, et al. Arc erosion behavior of Cu-Ti3SiC2 cathode and anode[J]. Vacuum,2017,141:235-242. doi: 10.1016/j.vacuum.2017.04.023 [15] DANG W T, REN S F, ZHOU J S, et al. Interdiffusion and reaction in bimetallic Cu-Sn thin films[J]. Ceramics International,2016,42(8):9972-9980. doi: 10.1016/j.ceramint.2016.03.099 [16] CHEN H Y, PENG J K, FU L. Effects of interfacial reaction and atomic diffusion on the mechanical property of Ti3SiC2 ceramic to Cu brazing joints[J]. Vacuum,2016,130:56-62. doi: 10.1016/j.vacuum.2016.05.002 [17] XIE H, LEONGAI T W, ZHANG P, et al. Erosion of Cu-Ti3SiC2 composite under vacuum arc[J]. Vacuum,2015,114:26-32. doi: 10.1016/j.vacuum.2014.12.016 [18] 卢棋, 何国球, 杨洋, 等. 新型铜钛硅碳石墨合金材料的摩擦磨损性能[J]. 材料研究学报, 2015, 29(3):216-220.LU Q, HE G Q, YANG Y, et al. Friction and wear property of a new Cu-based Cu/Ti3SiC2/C composite[J]. Chinese Journal of Materials Research,2015,29(3):216-220(in Chinese). [19] 许小龙, 倪东惠, 张宝霞, 等. 烧结温度和复压复烧对温压制备Cu-Ti3SiC2材料的影响[J]. 粉末冶金材料科学与工程, 2014, 19(2):197-204. doi: 10.3969/j.issn.1673-0224.2014.02.006XU X L, NI D H, ZHANG B X, et al. Effect of sinter temperature and double-press double-sinter on warm compaction prepared pure Cu-Ti3SiC2 composite[J]. Materials Science and Engineering of Powder Metallurgy,2014,19(2):197-204(in Chinese). doi: 10.3969/j.issn.1673-0224.2014.02.006 [20] 贲云飞, 徐桂芳, 杨娟, 等. Cu/Ti3SiC2复合材料的制备及其磨损性能研究[J]. 热加工工艺, 2012, 41(14):128-131. doi: 10.3969/j.issn.1001-3814.2012.14.036BEN Y F, XU G F, YANG J, et al. Preparation of Cu/Ti3SiC2 and its wear property[J]. Hot Working Technology,2012,41(14):128-131(in Chinese). doi: 10.3969/j.issn.1001-3814.2012.14.036 [21] FARIAS I, OLMOS L, JIMÉNEZ O, et al. Wear modes in open porosity titanium matrix composites with TiC addition processed by spark plasma sintering[J]. Transactions of Nonferrous Metals Society of China,2019,29(8):1653-1664. doi: 10.1016/S1003-6326(19)65072-7 [22] CHEN H S, NIE H H, ZHOU J, et al. Microstructure and mechanical properties of B4C/6061Al neutron absorber composite tube fabricated by spark plasma sintering and hot spinning[J]. Journal of Nuclear Materials,2019,517:393-400. doi: 10.1016/j.jnucmat.2018.12.048 [23] 张兴旺, 孟凡爱, 刘嘉玲, 等. Ti3SiC2替代石墨对铜基摩擦材料性能的影响[J]. 粉末冶金技术, 2014, 32(1):36-42. doi: 10.3969/j.issn.1001-3784.2014.01.007ZHANG X W, MENG F A, LIU J L, et al. Effect of Ti3SiC2 replacing graphite on the properties of copper based fraction materials[J]. Powder Metallurgy Technology,2014,32(1):36-42(in Chinese). doi: 10.3969/j.issn.1001-3784.2014.01.007 [24] ZHOU Y C, GU W L. Chemical reaction and stability of Ti3SiC2 in Cu during high-temperature processing of Cu/Ti3SiC2 composites[J]. International Journal of Materials Research,2004,95(1):50-56. [25] OLESINSKI R W, ABBASCHIAN G J. The Cu-Si (copper-silicon) system[J]. Bulletin of Alloy Phase Diagrams,1986,7(2):170-178.