留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩感知的复合材料板Lamb波场重构及损伤成像

李鹏飞 骆英 徐晨光

李鹏飞, 骆英, 徐晨光. 基于压缩感知的复合材料板Lamb波场重构及损伤成像[J]. 复合材料学报, 2021, 38(4): 1155-1166. doi: 10.13801/j.cnki.fhclxb.20200722.004
引用本文: 李鹏飞, 骆英, 徐晨光. 基于压缩感知的复合材料板Lamb波场重构及损伤成像[J]. 复合材料学报, 2021, 38(4): 1155-1166. doi: 10.13801/j.cnki.fhclxb.20200722.004
LI Pengfei, LUO Ying, XU Chenguang. Lamb wavefield reconstruction and damage imaging of composite plate based on compressed sensing[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1155-1166. doi: 10.13801/j.cnki.fhclxb.20200722.004
Citation: LI Pengfei, LUO Ying, XU Chenguang. Lamb wavefield reconstruction and damage imaging of composite plate based on compressed sensing[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1155-1166. doi: 10.13801/j.cnki.fhclxb.20200722.004

基于压缩感知的复合材料板Lamb波场重构及损伤成像

doi: 10.13801/j.cnki.fhclxb.20200722.004
基金项目: 国家自然科学重点国际合作项目(11520101001)
详细信息
    通讯作者:

    骆英,博士,教授,博士生导师,研究方向为无损检测、结构健康监测和智能材料与结构  E-mail:luoying@mail.ujs.edu.cn

  • 中图分类号: TB559, TB332

Lamb wavefield reconstruction and damage imaging of composite plate based on compressed sensing

  • 摘要: 为了解决全波场数据获取耗时的问题,引入压缩感知算法对波场进行稀疏表示。然而受限于导波在复合材料中复杂的传播特性,压缩感知在复合材料板中的应用成为难题。为此通过考虑导波在复合材料板中传播的各向异性波数特性,构建计算频带内不同角度下的波数库用于波场重构。同时在损伤分析阶段,提出了一种无需基准信号的复合材料损伤散射波场分离技术,精准实现入射波场的去除,提升损伤定位的精度。单损伤的实验和仿真结果表明,所提方法能够在低于90%的奈奎斯特采样点情况下实现波场的重构,且损伤定位误差均小于最小波长的2/3。双损伤的实验结果表明,所提方法可有效定位双损伤,相关成果可为复合材料损伤检测的实际运用提供理论和方法基础。

     

  • 图  1  测量点与潜在源间的角度模型

    Figure  1.  Angle model between measurement point and potential source

    图  2  压电传感器(PZT)和损伤的复合材料板模型

    Figure  2.  Composite plate model with piezoelectric transducer (PZT) and damage

    图  3  激励信号

    Figure  3.  Excitation signal

    图  4  抖动采样示意图

    Figure  4.  Jittered sampling diagram

    图  5  数值模拟的CFRP板三维A0源函数成像

    Figure  5.  3D A0 source function imaging of numerical simulation of CFRP plate

    图  6  CFRP板60 µs原始波场与重构波场对比

    Figure  6.  Comparison between original wavefield and reconstructed wavefield at 60 µs of CFRP plate

    图  7  数值模拟的CFRP板波场相干性曲线

    Figure  7.  Wavefield coherence curve of numerical simulation of CFRP plate

    图  8  数值模拟的CFRP板三维和二维A0源函数损伤成像

    Figure  8.  3D and 2D A0 source function damage imaging of numerical simulation of CFRP plate

    图  9  数值模拟的CFRP板损伤散射波场

    Figure  9.  Damage scattered wavefield of numerical simulation of CFRP plate

    图  10  PZT激励-扫描式激光多普勒测振仪(SLDV)接收的实验平台仪器连接示意图

    Figure  10.  Experimental platform instrument connection diagram of PZT excitation-scanning laser doppler vibrometer (SLDV) reception

    图  11  实验平台

    Figure  11.  Experimental platform

    图  12  PZT和损伤设置

    Figure  12.  PZT and damage setting

    图  13  测量区域下的PZT和损伤坐标信息

    Figure  13.  PZT and damage coordinate information under the measurement area

    图  14  CFRP板单损伤实验的A0源函数成像

    Figure  14.  A0 source function imaging of single damage experiment of CFRP plate

    图  15  CFRP板62.3 µs原始波场与重构波场对比

    Figure  15.  Comparison of CFRP plate between original wavefield and reconstructed wavefield at 62.3 µs

    图  16  单损伤实验的波场相干性曲线

    Figure  16.  Wavefield coherence curve of single damage experiment

    图  17  单损伤实验的CFRP板三维和二维A0源函数损伤成像

    Figure  17.  3D and 2D A0 source function damage imaging of single damage experiment of CFRP plate

    图  18  CFRP板单损伤实验的损伤散射波场

    Figure  18.  Damage scattered wavefield of single damage experiment of CFRP plate

    图  19  PZT和双损伤设置

    Figure  19.  PZT and double damages setting

    图  20  测量区域下的PZT和双损伤坐标信息

    Figure  20.  PZT and double damages coordinate information under the measurement area

    图  21  CFRP板双损伤实验的A0源函数成像

    Figure  21.  A0 source function imaging of double damages experiment of CFRP plate

    图  22  CFRP板双损伤实验的三维和二维A0源函数损伤成像

    Figure  22.  3D and 2D A0 source function damage imaging of double damages experiment of CFRP plate

    图  23  CFRP板双损伤实验的损伤散射波场

    Figure  23.  Damage scattered wavefield of double damages experiment of CFRP plate

    表  1  碳纤维增强树脂复合材料(CFRP)板参数设置

    Table  1.   Carbon fiber reinforced polymer (CFRP) plate parameter setting

    C11=C22/GPaC33/GPaC12/GPaC13=C23/GPa
    197.67 8.76 60.75 4.25
    C44=C55/GPa C66/GPa ρ/(kg·m−3) Thinckness/mm
    5.2 2.0 1580 1
    Notes: C—Stiffness coefficients; ρ—Density.
    下载: 导出CSV

    表  2  数值模拟的CFRP板损伤定位信息

    Table  2.   Damage location information of numerical simulation of CFRP plate

    Real location/
    mm
    Estimated location/
    mm
    Absolute error/
    mm
    (40, 80)(39, 79)1.4
    下载: 导出CSV

    表  3  单损伤实验的CFRP板损伤定位信息

    Table  3.   Damage location information of single damage experiment of CFRP plate

    Real location/mmEstimated location/mmAbsolute error/mm
    (28, 88)(24, 84)5.66
    下载: 导出CSV

    表  4  CFRP板的双损伤实验损伤定位信息

    Table  4.   Damage location information of double damages experiment of CFRP plate

    DamageReal location/
    mm
    Estimated location/
    mm
    Absolute error/
    mm
    No. 1(48, 98)(49, 94)4.12
    No. 2(28, 78)(27, 76)2.24
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [2] 谌广昌, 吴明忠, 陈普会. 高性能复合材料在直升机结构上的应用展望[J]. 航空制造技术, 2019, 62(12):83-90.

    CHEN Guangchang, WU Mingzhong, CHEN Puhui. Prospects for the application of high-performance composite materials in helicopter structures[J]. Aeronautical Manufacturing Technology,2019,62(12):83-90(in Chinese).
    [3] FORINTOS N, CZIGANY T. Multifunctional application of carbon fiber reinforced polymer composites: Electrical properties of the reinforcing carbon fibers-A short review[J]. Composites Part B: Engineering,2019,162:331-343. doi: 10.1016/j.compositesb.2018.10.098
    [4] 邱雷, 袁慎芳, 张逍越, 等. 基于Shannon复数小波的复合材料结构时间反转聚焦多损伤成像方法[J]. 复合材料学报, 2010, 27(2):101-107.

    QIU Lei, YUAN Shenfang, ZHANG Xiaoyue, et al. Time-reversed focusing multi-damage imaging method for composite structures based on Shannon complex wavelet[J]. Acta Materiae Compositae Sinica,2010,27(2):101-107(in Chinese).
    [5] 刘国强, 肖迎春, 张华, 等. 复合材料加筋壁板损伤识别的概率成像方法[J]. 复合材料学报, 2018, 35(2):311-319.

    LIU Guoqiang, XIAO Yingchun, ZHANG Hua, et al. Probabilistic imaging method for damage identification of reinforced composite siding[J]. Acta Materiae Compositae Sinica,2018,35(2):311-319(in Chinese).
    [6] WANG Q, YUAN S F. Baseline-free imaging method based on new PZT sensor arrangements[J]. Journal of Intelligent Material Systems & Structures,2009,20(14):1663-1673.
    [7] SAEEDIFAR M, MANSVELDER J, MOHAMMADI R, et al. Using passive and active acoustic methods for impact damage assessment of composite structures[J]. Composite Structures,2019,226:111252. doi: 10.1016/j.compstruct.2019.111252
    [8] CHIA C C, LEE J R, PARK C Y, et al. Laser ultrasonic anomalous wave propagation imaging method with adjacent wave subtraction: Application to actual damages in composite wing[J]. Optics & Laser Technology,2012,44(2):428-440.
    [9] LONGO R, VANLANDUIT S, VANHERZEELE J, et al. A method for crack sizing using laser doppler vibrometer measurements of surface acoustic waves[J]. Ultrasonics,2010,50(1):76-80. doi: 10.1016/j.ultras.2009.08.001
    [10] CAO X D. Non-contact damage detection under operational conditions with multipoint laservibrometry[J]. Sensors,2020,20(3):732. doi: 10.3390/s20030732
    [11] HARLEY J B, MOURA J M F. Sparse recovery of the multimodal and dispersive characteristics of Lamb waves[J]. The Journal of the Acoustical Society of America,2013,133(5):2732. doi: 10.1121/1.4799805
    [12] HARLEY J B, MOURA J M F. Data-driven matched field processing for Lamb wave structural health monitoring.[J]. Journal of the Acoustical Society of America,2014,135(3):1231-1244. doi: 10.1121/1.4863651
    [13] LEVINE R M, MICHAELS J E. Block-sparse reconstruction and imaging for lamb wave structural health monitoring[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control,2014,61(6):1006-1015.
    [14] LEVINE R M, MICHAELS J E. Model-based imaging of damage with Lamb waves via sparse reconstruction[J]. The Journal of the Acoustical Society of America,2013,133(3):1525. doi: 10.1121/1.4788984
    [15] PARK B, SOHN H. Reconstruction of laser ultrasonic wavefield images from reduced sparse measurements using compressed sensing aided super-resolution[C]. 43rd Review of Progress in Quantitative Nondestructive Evaluation, AIP Conference Proceedings, 2016: 1806(1): 030003.
    [16] IANNI T D, MARCHI L D, PERELLI A, et al. Compressive sensing of full wave field data for structural health monitoring applications[J]. IEEE Transactions on Ultrasonic Ferroelectrics & Frequency Control,2015,62(7):1373-1383.
    [17] ESFANDABADI Y K, MARCHI L D, TESTONI N, et al. Full wavefield analysis and damage imaging through compressive sensing in lamb wave inspections[J]. IEEE Transactions on Ultrasonic Ferroelectrics & Frequency Control,2018,65(2):269-280.
    [18] MESNIL O, RUZZENE M. Sparse wavefield reconstruction and source detection using compressed sensing[J]. Ultrasonics,2016,67:94-104. doi: 10.1016/j.ultras.2015.12.014
    [19] 骆英, 周杨, 李鹏飞, 等. 一种基于均匀稀疏采样的Lamb波场重构方法[J]. 无损检测, 2019, 41(9):28-32, 38.

    LUO Ying, ZHOU Yang, LI Pengfei, et al. A Lamb wavefield reconstruction method based on uniform sparse sampling[J]. Nondestructive Testing,2019,41(9):28-32, 38(in Chinese).
    [20] CANDES E J. Compressive sampling[J]. Proceedings of the International Congress of Mathematicians,2006,3:1433-1452.
    [21] ROSE, JOSEPH L. Ultrasonic guided waves in solid media: Plates[M]. Cambridge: Cambridge University Press, 2014.
    [22] EWOUT V D B, FRIEDLANDER M P. Probing the pareto frontier for basis pursuit solutions[J]. Siam Journal on Entific Computing,2008,31(2):890-912.
    [23] LEVINE R M. Ultrasonic guided wave imaging via sparse reconstruction[D]. Atlanta: Georgia Institute of Technology, 2014.
    [24] SHORTER P J. Wave propagation and damping in linear viscoelastic laminates[J]. Journal of the Acoustical Society of America,2004,115(5):1917. doi: 10.1121/1.1689342
    [25] 刘增华, 余锋祥, 于洪涛, 等. 基于群速度校准的超声导波技术及在复合材料缺陷检测中的应用[J]. 机械工程学报, 2012, 48(20):8-15. doi: 10.3901/JME.2012.20.008

    LIU Zenghua, YU Fengxiang, YU Hongtao, et al. Ultrasonic guided wave technology based on group velocity calibration and its application for defect detection in composite plates[J]. Journal of Mechanical Engineering,2012,48(20):8-15(in Chinese). doi: 10.3901/JME.2012.20.008
    [26] GIURGIUTIU V. Tuned Lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring[J]. Journal of Intelligent Material Systems and Structures,2005,16(4):291-305. doi: 10.1177/1045389X05050106
    [27] MOSER F, JACOBS L J, QU J. Modeling elastic wave propagation in waveguides with the finite element method[J]. NDT & E International,1999,32(4):225-234.
  • 加载中
图(23) / 表(4)
计量
  • 文章访问数:  1012
  • HTML全文浏览量:  500
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-25
  • 录用日期:  2020-07-08
  • 网络出版日期:  2020-07-22
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回