留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米BaTiO3-SiCw/聚偏氟乙烯三元复合薄膜的制备及其介电性能

于婷 许静 关晓琳 雷西萍

于婷, 许静, 关晓琳, 等. 纳米BaTiO3-SiCw/聚偏氟乙烯三元复合薄膜的制备及其介电性能[J]. 复合材料学报, 2021, 38(4): 1087-1097. doi: 10.13801/j.cnki.fhclxb.20200721.001
引用本文: 于婷, 许静, 关晓琳, 等. 纳米BaTiO3-SiCw/聚偏氟乙烯三元复合薄膜的制备及其介电性能[J]. 复合材料学报, 2021, 38(4): 1087-1097. doi: 10.13801/j.cnki.fhclxb.20200721.001
YU Ting, XU Jing, GUAN Xiaolin, et al. Preparation and dielectric properties of nano BaTiO3-SiCw/poly(vinylidene fluoride) ternary composite films[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1087-1097. doi: 10.13801/j.cnki.fhclxb.20200721.001
Citation: YU Ting, XU Jing, GUAN Xiaolin, et al. Preparation and dielectric properties of nano BaTiO3-SiCw/poly(vinylidene fluoride) ternary composite films[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1087-1097. doi: 10.13801/j.cnki.fhclxb.20200721.001

纳米BaTiO3-SiCw/聚偏氟乙烯三元复合薄膜的制备及其介电性能

doi: 10.13801/j.cnki.fhclxb.20200721.001
基金项目: “超级电容器电极材料设计与应用”团队建设资金;生态环境相关高分子材料教育部重点实验室开放基金(KF-18-01)
详细信息
    通讯作者:

    雷西萍,博士,教授,博士生导师,研究方向为高分子基复合材料的制备及性能  E-mail:leixiping123456@163.com

  • 中图分类号: TB332

Preparation and dielectric properties of nano BaTiO3-SiCw/poly(vinylidene fluoride) ternary composite films

  • 摘要: 以15wt%十六烷基三甲基溴化铵改性碳化硅晶须(CTAB-SiCw)和KH550改性纳米BaTiO3(BT)为填料,聚偏氟乙烯(PVDF)为成膜物质,通过溶液流延法制备了BT-SiCw/PVDF三元复合薄膜,利用FTIR、XRD、SEM和LCR介电温谱仪-高温测试系统联用装置对产物进行结构表征和介电性能测试。结果表明:KH550可以成功改性BT粒子且不会改变BT晶体结构,SiCw和BT能够较好地分散在PVDF基体中;随着BT引入量的增加,复合薄膜的介电常数先增加后减小,其中当引入10wt%BT时介电性能最优,即频率f=500 Hz、介电常数εrmax=33、介电损耗tanδmax=0.154。随着温度的升高,该试样的介电常数和介电损耗也逐渐增加,并在120℃达到最大值(f=500 Hz、εrmax=110、tanδmax=1.3)。结果对于研究具有高介电常数的三元复合电介质材料为在埋入式电容器中获得应用提供了一种策略。

     

  • 图  1  BaTiO3(BT)-碳化硅晶须(SiCw)/聚偏氟乙烯(PVDF)三元复合薄膜制备过程示意图

    Figure  1.  Schematic diagram of preparation process of BaTiO3 (BT)-SiC whiskers (SiCw)/poly(vinylidene fluoride) (PVDF) ternary composite film

    CTAB—Cetyltrimethyl ammonium bromide

    图  2  十六烷基三甲基溴化铵(CTAB)-SiCw (a)、硅烷偶联剂KH550-BT纳米颗粒 (b)、纯PVDF膜、CTAB-SiCw/PVDF及BT-SiCw/PVDF (c) 的FTIR图谱

    Figure  2.  FTIR spectra of cetyltrimethylammonium bromide (CTAB)-SiCw (a), silane coupling agent KH550-BT nanoparticles (b), pure PVDF film, CTAB-SiCw/PVDF and BT-SiCw/PVDF film (c)

    图  3  硅烷偶联剂KH550与BT的作用机制图[30]

    Figure  3.  Schematic diagram of BT and silane coupling agent KH550[30]

    图  4  纯PVDF膜、CTAB-SiCw/PVDF及BT-SiCw/PVDF复合薄膜的XRD图谱

    Figure  4.  XRD spectra of pure PVDF film, CTAB-SiCw/PVDF and BT-SiCw/PVDF composite film

    图  5  BT-SiCw/PVDF复合薄膜的SEM图像和EDS图谱

    Figure  5.  SEM images and EDS spectra of BT-SiCw/PVDF composite film

    图  6  不同BT质量分数的BT-SiCw/PVDF复合薄膜的介电性能(T=25℃)

    Figure  6.  Dielectric properties of BT-SiCw/PVDF composite film with different BT mass fractions (T=25℃)

    图  7  BT的质量分数为10wt%的BT-SiCw/PVDF复合薄膜的介电性能

    Figure  7.  Dielectric properties of BT-SiCw/PVDF composite film with 10wt% BT

    表  1  不同BT质量分数的BT-SiCw/PVDF复合薄膜的介电常数和介电损耗(T=25℃)

    Table  1.   Dielectric constant and loss tangent of different BT mass fractions of BT-SiCw/PVDF composite film (T=25℃)

    BT/wt%Dielectric constantDielectric loss
    5 22 0.148
    10 33 0.154
    15 23 0.252
    20 28 0.202
    下载: 导出CSV
  • [1] YUAN J K, LI W L, YAO S H, et al. High dielectric permittivity and low percolation threshold in polymer compsites based on SiC-carbonnanotubes micro/nanohybrid[J]. Applied Physics Letters,2011,98(3):2101.
    [2] YAN L I, HONG C, JIE Y J, et al. Influence of pyrocarbon matrix vonc entration on thermal physical and mechanical properties of pitch-based carbon/carbon composites[J]. Journal of the Chinese Ceramic Society,2016,3(4):167-176.
    [3] CAO J P, ZHAO J, ZHAO X, et al. Preparati on and characterization of surface modified silicon carbide polystyrene nanocomposites[J]. Journal of Applied Polymer Science,2013,130(1):638-644. doi: 10.1002/app.39186
    [4] ZHANG Q M, LI H, POH M, et al. An all organic composite actuator material with a high dielectric constant[J]. Nature,2002,419(6904):284-287. doi: 10.1038/nature01021
    [5] LIU J, TIAN G, QI S, et al. Enhanced dielectric permittivity of a flexible three phase polyimide/graphene/BaTiO3 composite material[J]. Materials Letters,2014,124:117-119. doi: 10.1016/j.matlet.2014.02.105
    [6] LI M, DENG Y, WANG Y, et al. High dielectric properties in a three-phase polymer composite induced by a parallel structure[J]. Materials Chemistry and Physics,2013,139(2-3):865-870. doi: 10.1016/j.matchemphys.2013.02.045
    [7] ROBERTS S. Dielectric constants and polarizabilities of ions in simple crystals and barium titanate[J]. Physical Review,1949,76(8):1215-1220. doi: 10.1103/PhysRev.76.1215
    [8] KUANG J, CAO W. Silicon carbide whiskers: Preparation and high dielectric permittivity[J]. Journal of the American Ceramic Society,2013,96(9):2877-2880. doi: 10.1111/jace.12393
    [9] LI Y, HUANG X, HU Z, et al. Large dielectric constant and high thermal conductivity in poly (vinylidene fluorid e)/barium titanate/silicon carbide three phase nanocomposites[J]. ACS Applied Materials & Interfaces,2011,3(11):4396-4403.
    [10] 刘玲, 亢茂青, 王心葵. SiC晶须表面化学与力学性能的研究[J]. 兵器材料科学与工程, 2000, 23(5):59-64. doi: 10.3969/j.issn.1004-244X.2000.05.013

    LIU L, KANG M Q, WANG X K. Study on surface chemical and mechanical properties of SiC whisker[J]. Ordnance Material Science and Enginenering,2000,23(5):59-64(in Chinese). doi: 10.3969/j.issn.1004-244X.2000.05.013
    [11] 艾云龙, 李玲艳, 程玉桂, 等. ZrO2(n)、SiC(W)的分散及与MoSi2基质的均匀混合工艺研究[J]. 材料热处理学报, 2005, 26(2):18-22.

    AI Y L, LI L Y, CHENG Y G, et al. Study on dispersion of ZrO2(n), SiCC(w) and uniform mixing process with MoSi2 matrix[J]. Tran Sactions of Materials and Heat Treatmen,2005,26(2):18-22(in Chinese).
    [12] 韩敏芳. 碳化硅晶须品质及影响因素[J]. 人工晶体学报, 1996(4):343-347.

    HAN M F. Technological factors related to the character of silicon carbide whiskers[J]. Journal of Synehrtic Crystals,1996(4):343-347(in Chinese).
    [13] SONGY, SHEN Y, LIU H, et al. Improving the dielectric constants and breakdown strength of polymer composites: Effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix[J]. Journal of Materials Chemistry,2012,22(32):16491-16498. doi: 10.1039/c2jm32579a
    [14] 曲远方. 现代陶瓷材料及技术[M]. 上海: 华东理工大学出版社, 2008.

    QU Y F. Modern ceramic material sand technologies[M]. Shanghai: East China University of Science and Technology Press, 2008(in Chinese).
    [15] YANG M, HU C, ZHAO H, et al. Core@ double-shells nanowires strategy for simultaneously improving dielectric constants and suppressing losses of poly(vinylidene fluoride) nano composites[J]. Carbon,2018,132:152-156. doi: 10.1016/j.carbon.2018.02.047
    [16] DAI Z, HAN J, GAO Y, et al. Increased dielectric permittivity of poly (vinylidene fluoridecochl orotr ifluoroethy lene) nanocomposites by coating BaTiO3 with functional groups owning high bond dipole moment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2017,529:560-570. doi: 10.1016/j.colsurfa.2017.05.065
    [17] SONG S, WANG Y, LUO Y, et al. Onedimensional oriented microcapacitors internary polymer nanocomposites: Toward high breakdown strength and suppressed loss[J]. Materials & Design,2018,140:114-122.
    [18] YAO M, YOU S, PENG Y. Dielectric constant and energy density of poly(vinylidene fluoride) nanocomposites filled with coreshell structured BaTiO3@Al2O3 nanoparticles[J]. Ceramics International,2017,43(3):3127-3132. doi: 10.1016/j.ceramint.2016.11.128
    [19] 王偲宇. 高介电聚合物薄膜制备及其介电性能研究[D]. 成都: 电子科技大学, 2013.

    WANG S Y. Preparation and dielectric properties of high dielectric polymer films[D]. Chengdu: University of Electronic Science and Technology of China, 2013(in Chinese).
    [20] 许静. 有机改性SiC晶须/PVDF复合薄膜的制备及介电性能研究[D]. 西安: 西安建筑科技大学, 2018.

    XU J. Synthesis and dielectric properties of organic modified SiC whisker/PVDF composite membranes[D]. Xi'an: Xi'an University of Architecture and Technology, 2018(in Chinese).
    [21] GUAN S, LI H, ZHAO S, et al. Novel three component nanocomposites with high dielectric permittivity and low dielectric loss cofilled by carboxyl functionalized multi-walled nanotube and BaTiO3[J]. Composites Ence and Technology,2018,158(12):79-85.
    [22] KIM H, JOHNSON J, CHAVEZ L A, et al. Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition modeling 3D printing[J]. Ceramics International,2018,44(8):9037-9044. doi: 10.1016/j.ceramint.2018.02.107
    [23] LUO H, WU Z, ZHOU X, et al. Enhanced performance of P(VDF-HFP) composites using two-dimensional BaTiO3 platelets and graphene hybrids[J]. Composites Science and Technology,2018,160:237-244. doi: 10.1016/j.compscitech.2018.03.034
    [24] HU P H, JIA Z Y, SHEN Z H, et al. High dielectric constant and energy density induced by the tunable TiO2 interfacial buffer layer in PVDF nanocomposite contained with core-shell structured nanoparticles[J]. Applied Surface Science,2018,4(1):824-831.
    [25] LI X K, LIU L S, WU D, et al. Preparation of sic whiskers from binary carbonaceous-silica xerogel and aerogel[J]. Bulletin of the Chinese Ceramic Society,2000(5):23-27.
    [26] 杨辉, 张玲洁, 郭兴忠, 等. 微米碳化硅晶须在水介质中的分散行为[J]. 无机化学学报, 2012, 28(1):153-158.

    YANG H, ZHANG L J, GUO X Z, et al. Dispersion behavior of micron silicon carbide whiskers in aqueous medium[J]. Journal of Inorganic Chemistry,2012,28(1):153-158(in Chinese).
    [27] RAI A K, RAO K N, KUMAR L V, et al. Synthesis and characterization of ultrafine barium calcium titanate, barium strontium titanate and Ba2xCaxSrxTiO3(x= 0.05, 0.10)[J]. Journal of Alloys and Compounds,2009,475(1-2):316-320. doi: 10.1016/j.jallcom.2008.07.038
    [28] 谢礼源, 江平开, 黄兴溢, 等. 高介电常数的钛酸钡/聚合物复合材料及其制备方法: 中国, CN103382240A[P]. 2013-11-06.

    XIE L Y, JIANG P K, HUANG X Y, et al. Barium titanate/polymer composites with high dielectric cons tant and their preparation methods: China, CN103382240A[P]. 2013-11-06(in Chinese).
    [29] LIU F, ABED M M, LI K. Preparation and characterization of poly (vinylidene fluoride)(PVDF) based ultrafiltration membranes using nano γ-Al2O3[J]. Journal of Membrane Science,2011,366(1-2):97-103. doi: 10.1016/j.memsci.2010.09.044
    [30] 罗遂斌, 于淑会, 孙蓉, 等. BaTiO3 表面改性对其环氧树脂复合材料性能的影响[J]. 电子元件与材料, 2011, 30(1):46-49. doi: 10.3969/j.issn.1001-2028.2011.01.012

    LUO S B, YU S H, SUN R, et al. Effect of surface modification of BaTiO3 on the properties of BaTiO3 epoxy composites[J]. Electronic Components and Materials,2011,30(1):46-49(in Chinese). doi: 10.3969/j.issn.1001-2028.2011.01.012
    [31] ZHANG Z, GU Y, WANG S, et al. Enhancement of dielectric and electrical properties in BT/SiC/PVDF three-phase composite through micr ostructure tailoring[J]. Composites Part A: Applied Science and Manufacturing,2015,74:88-95. doi: 10.1016/j.compositesa.2015.04.002
    [32] 金雪琴. 钛酸钡陶瓷材料的光谱研究[D]. 上海: 上海师范大学, 2008.

    JIN X Q. Spectroscopic study of barium titanate ceramic materials[D]. Shanghai: Shanghai Normal University, 2008(in Chinese).
    [33] 李彩霞. 溶液法制备β晶型PVDF条件及机理研究[D]. 天津: 天津工业大学, 2015.

    LI C X. Study on the conditions and mechanism of preparation of β crystal form PVDF by solution method[D]. Tianjin: Tianjin Polytechnic University, 2015(in Chinese).
    [34] YE H J, SHAO W Z, ZHEN L. Crystallization kinetics and phase transformation of poly (vinylidene fluoride) films incorporated with functionalized TiO3 nanoparticles[J]. Journal of Applied Polymer Science,2013,129(5):2940-2949. doi: 10.1002/app.38949
    [35] DANG Z, YUAN J, ZHA J, et al. Fundamentals, processes and applications of high permittivity polymermatrix composites[J]. Progress in Materials Science,2012,57(4):660-723. doi: 10.1016/j.pmatsci.2011.08.001
    [36] THAKUR V K, GUPTA R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects[J]. Chemical Reviews,2016,116(7):4260-4317. doi: 10.1021/acs.chemrev.5b00495
    [37] FAN B, ZHA J, WANG D, et al. Size-dependent low-frequency dielectric properties in the BaTiO3/poly(viny lidene fluoride) nanocomposite films[J]. Applied Physics Letters,2012,100(1):12903-1-4.
    [38] TANAKA T, MONTANARI G C, MULHAUPT R. Polymer nanocompo sitesas dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future application[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(5):763-784. doi: 10.1109/TDEI.2004.1349782
    [39] WANG Q, ZHU L. Polymer nanocomposites for electrical energy storage[J]. Journal of Polymer Science Part B: Polymer Physics,2011,49(20):1421-1429. doi: 10.1002/polb.22337
    [40] WANG Y, LUO F, ZHOU W, et al. Dielectric and electromagnetic wave absorbing properties of TiC/epoxy composites in the GHz range[J]. Ceramics International,2014,40(7):10749-10754. doi: 10.1016/j.ceramint.2014.03.064
    [41] PRASAD K, PRASAD A, CHANDRA K P, et al. Electrical conduction in BaTiO3/PVDF composites[J]. Integrated Ferroelectrics,2010,117(1):55-67. doi: 10.1080/10584587.2010.489425
    [42] ZHU M, HUANG X, YANG K, et al. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: Understanding the role of polymer shells in the interfacial regions[J]. ACS Applied Materials & Interfaces,2014,6(22):19644-19654.
    [43] SHEN Y, LIN Y, LI M, et al. High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer[J]. Advanced Materials,2007,19(10):1418-1422. doi: 10.1002/adma.200602097
    [44] WANG L, ZHENG Z, DAVRIS T, et al. Influence of morphology on the mechanical properties of polymer nanocomposites filled with uniform or patchy nanoparticles[J]. Langmuir,2016,32(3):8473-8483.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1151
  • HTML全文浏览量:  379
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-21
  • 录用日期:  2020-06-30
  • 网络出版日期:  2020-07-22
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回