留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维机织复合材料残余应力/应变多尺度分析及工艺参数优化

王琦 蒋秋梅 杨旭锋 任明法

王琦, 蒋秋梅, 杨旭锋, 等. 三维机织复合材料残余应力/应变多尺度分析及工艺参数优化[J]. 复合材料学报, 2021, 38(4): 1167-1176. doi: 10.13801/j.cnki.fhclxb.20200720.002
引用本文: 王琦, 蒋秋梅, 杨旭锋, 等. 三维机织复合材料残余应力/应变多尺度分析及工艺参数优化[J]. 复合材料学报, 2021, 38(4): 1167-1176. doi: 10.13801/j.cnki.fhclxb.20200720.002
WANG Qi, JIANG Qiumei, YANG Xufeng, et al. Multiscale analysis and process parameters optimization of residual stress/strain of 3D woven composite[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1167-1176. doi: 10.13801/j.cnki.fhclxb.20200720.002
Citation: WANG Qi, JIANG Qiumei, YANG Xufeng, et al. Multiscale analysis and process parameters optimization of residual stress/strain of 3D woven composite[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1167-1176. doi: 10.13801/j.cnki.fhclxb.20200720.002

三维机织复合材料残余应力/应变多尺度分析及工艺参数优化

doi: 10.13801/j.cnki.fhclxb.20200720.002
基金项目: 国家自然科学基金 (U1837204)
详细信息
    通讯作者:

    任明法,博士,教授,博士生导师,研究方向为复合材料力学及其结构分析  E-mail:renmf@dlut.edu.cn

  • 中图分类号: TB332

Multiscale analysis and process parameters optimization of residual stress/strain of 3D woven composite

  • 摘要: 为预测三维机织复合材料工艺引入的残余应力/应变,提出工艺制度优化方案,建立了一种工艺过程分析的多尺度模型。通过建立纤维尺度及纱线尺度代表体元(RVE),计算了成型过程中纤维纱线及三维机织复合材料的模量演化历程。考虑固化过程中树脂的化学收缩效应,在纱线尺度上开展热-化学-力学耦合分析,预测了细观残余应力-应变及其演化规律。采用三维机织技术,实现了光纤布拉格光栅传感器(FBG)在三维机织预制体中的预埋,并对其树脂传递模塑(RTM)成型过程中的温度、应变历程进行监测,试验结果验证了有限元模型的准确性。采用基于空间信息、误差信息和优化结果的三种序列采样方法,建立了工艺过程分析代理模型,并开展工艺参数优化设计,结果显示采用优化后的工艺参数,残余应变降低了15.4%,工艺周期缩短了10.6%。

     

  • 图  1  纤维尺度代表性体积单元(RVE)

    Figure  1.  Fiber scale representative volume elemrnt (RVE)

    图  2  纱线尺度RVE

    Figure  2.  Yarn scale RVE

    图  3  典型固化工艺周期

    Figure  3.  Typical autoclave process cycle

    图  4  固化工艺优化流程

    Figure  4.  Flow chart of the optimization of the curing process

    图  5  纱线尺度RVE中心点温度和固化度曲线

    Figure  5.  Histories of temperature and degree of cure at the center of yarn scale RVE

    图  6  固化过程中树脂收缩应变和树脂模量演化规律

    Figure  6.  Evolutions of resin shrinkage strain and resin modulus during curing process

    图  7  126 min时三维机织复合材料纱线尺度RVE温度和固化度分布云图

    Figure  7.  Distribution of temperature and degree of cure of 3D woven composite yarn scale RVE at 126 min

    图  8  225 min时三维机织复合材料纱线尺度RVE温度和固化度分布云图

    Figure  8.  Distribution of temperature and degree of cure of 3D woven composite yarn scale RVE at 225 min

    图  9  三维机织复合材料纱线尺度RVE固化后各方向残余应变场分布

    Figure  9.  Distribution of residual strain field after curing of 3D woven composite yarn scale RVE

    图  10  三维机织预制体与模具

    Figure  10.  3D woven perform and tool

    图  11  三维机织复合材料固化中内部温度曲线

    Figure  11.  Internal temperature history of 3D woven composites during curing

    图  12  三维机织复合材料固化过程残余应变演化仿真与试验结果对比

    Figure  12.  Comparison of simulation and experiment result of residual strain evolution of 3D woven composite during curing process

    表  1  3501-6环氧树脂热-化学性能[7]

    Table  1.   Thermo-chemical properties of 3501-6 epoxy resin[7]

    ParameterValue
    ${\rho _{\rm{r}}}/({\rm{kg}} \cdot {{\rm{m}}^{ - 3}})$ $90\alpha + 1\;232(\alpha \leqslant 0.45)\ \ \ \ 1\;272(\alpha > 0.45)$
    ${C_{\rm{r}}}/({\rm{J}} \cdot {{\rm{(kg}} \cdot {\rm{K)}}^{ - 1}})$ $4\;148(0.468 + 5.975 \times {10^{ - 4} }T - 0.141\alpha )$
    ${k_{\rm{r}}}/({\rm{W}} \cdot {{\rm{(m}} \cdot {\rm{K)}}^{ - 1}})$ $0.04184(3.85 + (0.035T - 0.141)\alpha )$
    ${H_{\rm{r}}}/\left( {{\rm{J}} \cdot {\rm{k}}{{\rm{g}}^{ - 1}}} \right)$ $473\;600$
    ${A_1}/{\min ^{ - 1}}$ $2.102 \times {10^9}$
    ${A_2}/{\min ^{ - 1}}$ $ - 2.104 \times {10^9}$
    ${A_3}/{\min ^{ - 1}}$ $1.960 \times {10^5}$
    $\Delta {E_1}/\left( {{\rm{J}} \cdot {\rm{mo}}{{\rm{l}}^{ - 1}}} \right)$ $8.07 \times {10^4}$
    $\Delta {E_2}/\left( {{\rm{J}} \cdot {\rm{mo}}{{\rm{l}}^{ - 1}}} \right)$ $7.78 \times {10^4}$
    $\Delta {E_3}/\left( {{\rm{J}} \cdot {\rm{mo}}{{\rm{l}}^{ - 1}}} \right)$ $5.66 \times {10^4}$
    Notes: ${\rho _{\rm{r}}}$—Density of the resin; ${C_{\rm{r}}}$—Specific heat capacity of the resin; ${k_{\rm{r}}}$—Thermal conductivity of the resin; Ai—Frequency factors; $\Delta {E_i}$—Activation energies.
    下载: 导出CSV

    表  2  AS4碳纤维和3501-6环氧树脂力学性能[10]

    Table  2.   Mechanical properties of AS4 carbon fiber and 3501-6 epoxy resin[10]

    ParameterValue
    $E_{\rm{r}}^\infty /{\rm{GPa}}$ 3.447
    $E_{\rm{r}}^0/{\rm{GPa}}$ 3.447/1 000
    $v_{\rm{r}}^\infty $ 0.37
    ${\phi _{\rm{r}}}/℃{^{ - 1}} $ $57.6 \times {10^{ - 6}}$
    ${E_{{\rm{f}}1}}/{\rm{GPa}}$ 206.8
    ${E_{{\rm{f}}2}}/{\rm{GPa}}$ 20.7
    ${v_{{\rm{f}}12}}$ 0.2
    ${v_{{\rm{f}}13}}$ 0.2
    ${v_{{\rm{f}}23}}$ 0.5
    ${G_{{\rm{f}}12}}/{\rm{GPa}}$ 27.6
    ${G_{{\rm{f}}13}}/{\rm{GPa}}$ 27.6
    ${G_{{\rm{f}}23}}/{\rm{GPa}}$ 6.9
    ${\phi _{{\rm{f}}1}}/℃{^{ - 1}}$ $ - 9.0 \times {10^{ - 7}}$
    ${\phi _{{\rm{f}}2}}/℃{^{ - 1}}$ $7.2 \times {10^{ - 6}}$
    Notes: E, v and G—Elastic modulus, Poisson’s ratio and shear modulus, respectively; $\phi $—Coefficient of thermal expansion; subscripts f and r represent fiber and resin respectively.
    下载: 导出CSV

    表  3  AS4碳纤维热-力学性能[26]

    Table  3.   Thermo-chemical properties of AS4 carbon fiber[26]

    ParameterValue
    ${\rho _{\rm{f}}}/\left( {{\rm{kg}} \cdot {{\rm{m}}^{{\rm{ - 3}}}}} \right)$ 1790
    ${C_{\rm{f}}}/\left( {{\rm{J}} \cdot {{\left( {{\rm{kg}} \cdot {\rm{K}}} \right)}^{ - 1}}} \right)$ $750 + 2.05T$
    $k_{\rm{f}}^{\rm{L}}/\left( {{\rm{W}} \cdot {{\left( {{\rm{m}} \cdot {\rm{K}}} \right)}^{ - 1}}} \right)$ $ 0.04184 \times \left( {3.85 + \left( {0.035T - 0.141} \right)\alpha } \right) $
    $k_{\rm{f}}^{\rm{T}}/\left( {{\rm{W}} \cdot {{\left( {{\rm{m}} \cdot {\rm{K}}} \right)}^{ - 1}}} \right)$ $2.4 + 0.00507T$
    Notes: ${\rho _{\rm{f}}}$—Density of the fiber; ${C_{\rm{f}}}$—Specific heat capacity of the fiber; $k_{\rm{f}}^{\rm{L}}$, $k_{\rm{f}}^{\rm{T}}$—Longitudinal and transverse thermal conductivity of the fiber respectively.
    下载: 导出CSV

    表  4  多岛遗传优化算法参数

    Table  4.   Parameters used for multi-island GA optimization

    ParameterValue
    Number of generations 50
    Number of islands 2
    Rate of migration 0.25
    Rate of mutation 0.01
    Sub-population size 100
    Elite size 2
    下载: 导出CSV

    表  5  三维机织复合材料固化工艺参数优化结果

    Table  5.   Optimized results of process parameters for 3D woven composite curing

    ParameterOriginal valueOptimal value
    h1 /(℃·min−1) 2 2.038
    h2 /(℃·min−1) 2 1.794
    c1 /(℃·min−1) 2 3.88
    ${t_{{\rm{cc}}}}$/min 340 303.7
    ${\bar \varepsilon _{{\textit{zz}}}}\left( x \right)$/10−6 −1 089 −921.2
    下载: 导出CSV
  • [1] 周储伟, 张音旋. 三维机织复合材料多尺度黏弹性分析[J]. 复合材料学报, 2007, 24(5):125-129. doi: 10.3321/j.issn:1000-3851.2007.05.023

    ZHOU Chuwei, ZHANG Yinxuan. Multi-scale viscoelastic analysis of 3D woven composite materials[J]. Acta Materiae Compositae Sinica,2007,24(5):125-129(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.05.023
    [2] 杨彩云, 李嘉禄. 三维机织复合材料力学性能的各向异性[J]. 复合材料学报, 2006, 23(2):59-64. doi: 10.3321/j.issn:1000-3851.2006.02.011

    YANG Caiyun, LI Jialu. Mechanical anisotropy of three dimensional woven composites[J]. Acta Materiae Compositae Sinica,2006,23(2):59-64(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.02.011
    [3] 周光明, 王新峰, 王鑫伟, 等. 三维机织复合材料的力学模型与实验验证[J]. 南京航空航天大学学报, 2004, 36(4):444-448.

    ZHOU Guangming, WANG Xinfeng, WANG Xinwei, et al. Mechanical model and experimental verifications of 3D woven composites[J]. Journal of Nanjing University of Aeronautics & Astronautics,2004,36(4):444-448(in Chinese).
    [4] WANG Q, LI T, YANG X, et al. Multiscale numerical and experimental investigation into the evolution of process-induced residual strain/stress in 3D woven composite[J]. Composites Part A: Applied Science and Manufacturing,2020,135:105913.
    [5] 郭兆璞, 陈浩然, 息志臣. 复合材料层合板的固化残余应力和变形分析[J]. 复合材料学报, 1996, 13(1):105-110.

    GUO Zhaopu, CHEN Haoran, XI Zhichen. Analysis of residual stress and deformation of composite laminates[J]. Acta Materiae Compositae Sinica,1996,13(1):105-110(in Chinese).
    [6] 张江涛, 尚云东, 张梅, 等. 复合材料固化相关黏弹性性能演化及残余应力分析[J]. 复合材料学报, 2017, 34(5):978-986.

    ZHANG Jiangtao, SHANG Yundong, ZHANG Mei, et al. Analysis on the process dependent viscoelastic properties and residual stresses of composites during cure[J]. Acta Materiae Compositae Sinica,2017,34(5):978-986(in Chinese).
    [7] JOHNSTON A A. An integrated model of the development of process-induced deformation in autoclave processing of composite structures[D]. Vancouver: University of British Columbia, 1997.
    [8] 丁安心. 热固性树脂基复合材料固化变形数值模拟和理论研究[D]. 武汉: 武汉理工大学, 2016.

    DING Anxin. Numerical and theoretical study on process-induced[D]. Wuhan: Wuhan University of Technology, 2016(in Chinese).
    [9] STANGO R J, WANG S S. Process-induced residual thermal stresses in advanced fiber-reinforced composite laminates[J]. Journal of Engineering for Industry,1984,106(1):48-54. doi: 10.1115/1.3185910
    [10] BOGETTI T A, GILLESPIE J W. Process-induced stress and deformation in thick-section thermoset composite laminates[J]. Journal of Composite Materials,1992,26(5):626-660. doi: 10.1177/002199839202600502
    [11] BENAVENTE M, MARCIN L, COURTOIS A, et al. Numerical analysis of viscoelastic process-induced residual distortions during manufacturing and post-curing[J]. Composites Part A: Applied Science and Manufacturing,2018,107:205-216. doi: 10.1016/j.compositesa.2018.01.005
    [12] TWIGG G, POURSTARTIP A, FERNLUND G. Too-part interaction in composites processing. Part II: numerical modelling[J]. Composites Part A (Applied Science and Manufacturing),2004,35(1):0-141.
    [13] BARAN I, HATTEL J H, AKKERMAN R. Investigation of process induced warpage for pultrusion of a rectangular hollow profile[J]. Composites Part B: Engineering,2015,68:365-374. doi: 10.1016/j.compositesb.2014.07.032
    [14] ZOBEIRY N, VAZIRI R, POURSARTIP A. Computationally efficient pseudo-viscoelastic models for evaluation of residual stresses in thermoset polymer composites during cure[J]. Composites Part A: Applied Science and Manufacturing,2010,41(2):247-256.
    [15] DING A, LI S, SUN J, et al. A comparison of process-induced residual stresses and distortions in composite structures with different constitutive laws[J]. Journal of Reinforced Plastics and Composites,2016,35(10):807-823. doi: 10.1177/0731684416629764
    [16] PRASATYA P, MCKENNA G B, SIMON S L. A viscoelastic model for predicting isotropic residual stresses in thermosetting materials: Effects of processing parameters[J]. Journal of Composite Materials,2001,35(10):826-848. doi: 10.1177/a037322
    [17] ROSSO P, FIEDLER B, FRIEDRICH K, et al. The influence of residual stresses implicated via cure volume shrinkage on CF/VEUH—composites[J]. Journal of Materials Science,2006,41(2):383-388. doi: 10.1007/s10853-005-2619-y
    [18] 李冬娜. 树脂基复合材料固化行为的多尺度仿真研究[D]. 兰州: 兰州理工大学, 2018.

    LI Dongna. Multiscale simulation investigation of curing behavior in resin matrix composites[D]. Lanzhou: Lanzhou University of Technology, 2018(in Chinese).
    [19] YUAN Z, WANG Y, YANG G, et al. Evolution of curing residual stresses in composite using multi-scale method[J]. Composites Part B: Engineering,2018,155:49-61. doi: 10.1016/j.compositesb.2018.08.012
    [20] 徐胜利, 刘海涛, 王晓放, 等. 基于序列采样算法的轮盘减质优化[J]. 航空动力学报, 2014, 29(9):2097-2103.

    XU Shengli, LIU Haitao, WANG Xiaofang, et al. Mass optimization of turbine disk based on sequential sampling algorithm[J]. Journal of Aerospace Power,2014,29(9):2097-2103(in Chinese).
    [21] 殷艺云, 郭海丁. 基于粒子群神经网络的轮盘优化[J]. 航空动力学报, 2007, 22(9):1578-1582. doi: 10.3969/j.issn.1000-8055.2007.09.031

    YIN Yiyun, GUO Haiding. Optimization of turbine disk based on particle swarm optimization and neural network[J]. Journal of Aerospace Power,2007,22(9):1578-1582(in Chinese). doi: 10.3969/j.issn.1000-8055.2007.09.031
    [22] 黄章俊, 王成恩. 基于Kriging模型的涡轮盘优化设计方法[J]. 计算机集成制造系统, 2010, 16(5):905-911.

    HUANG Zhangjun, WANG Cheng'en. Turbine discs optimization design based on Kriging model[J]. Computer Integrated Manufacturing Systems,2010,16(5):905-911(in Chinese).
    [23] 李铁柱, 李光耀, 陈涛, 等. 基于Kriging近似模型的汽车乘员约束系统稳健性设计[J]. 机械工程学报, 2010, 46(22):123-129. doi: 10.3901/JME.2010.22.123

    LI Tiezhu, LI Guangyao, CHEN Tao, et al. Robustness design of occupant restraint system based on Kriging model[J]. Journal of Mechanical Engineering,2010,46(22):123-129(in Chinese). doi: 10.3901/JME.2010.22.123
    [24] REN M, WANG Q, CONG J, et al. Study of one-dimensional cure simulation applicable conditions for thick laminates and its comparison with three-dimensional simulation[J]. Science and Engineering of Composite Materials,2018,25(6):1197-1204. doi: 10.1515/secm-2017-0244
    [25] HUANG C, REN M F, LI T, et al. Trans-scale modeling framework for failure analysis of cryogenic composite tanks[J]. Composites Part B: Engineering,2016,85:41-49. doi: 10.1016/j.compositesb.2015.09.023
    [26] SHIN D D, HAHN H T. Compaction of thick composites: Simulation and experiment[J]. Polymer Composites,2004,25(1):49-59. doi: 10.1002/pc.20004
    [27] LIU H, XU S, WANG X. Sequential sampling designs based on space reduction[J]. Engineering Optimization,2015,47(7):867-884. doi: 10.1080/0305215X.2014.928816
    [28] 刘海涛. 基于近似模型的工程优化方法中相关问题研究及应用[D]. 大连: 大连理工大学, 2016.

    LIU Haitao. The research and application of metamodel-based engineering optimization[D]. Dalian: Dalian University of Technology, 2016(in Chinese).
    [29] WHITLEY D. A genetic algorithm tutorial[J]. Statistics & Computing,1994,4(2):65-85.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  1224
  • HTML全文浏览量:  532
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-21
  • 录用日期:  2020-07-01
  • 网络出版日期:  2020-07-21
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回