Research progress of Ti-based MXene and its composites in metal-ion batteries
-
摘要: 二维过渡金属碳(氮或碳氮)化物MXene自2011年首次报告后,其家族成员不断增加,目前已有超过20种MXene被成功合成。凭借独特的层状结构,出色的物理化学性质和可设计的表面官能团特性,MXene被认为是极具潜力的电极材料。近年来,MXene及其复合材料在储能领域进展显著。为此,本文综述了Ti基MXene及其复合材料在Li离子电池和Na离子电池中的研究进展,并结合其制备方法和特性,详细介绍了电池性能提升策略或机制。最后,指出了MXene及其复合材料构建高性能电池面临的挑战,并对未来前景进行了展望。Abstract: Since two-dimensional transition metal carbides (nitrides or carbonitrides) MXenes was first reported in 2011, its family members have been increasing. At present, more than 20 MXenes have been successfully synthesized. With unique layered structure, excellent physicochemical properties and designable surface functional group characteristics, MXenes are considered as promising electrode material. In recent years, some remarkable progress of MXenes and its composite materials are achieved in energy storage. To this end, this review presents the research progress of Ti-based MXenes and its composite materials in Lithium-ion batteries and Sodium-ion batteries. Combined with the preparation methods and characteristics of MXenes, the strategies or mechanisms of improving battery performance are introduced in detail. Finally, the challenges and prospects of MXenes and its composite materials in fabricating high-performance batteries are pointed out.
-
Key words:
- MXene /
- energy storage /
- Li-ion battery /
- Na-ion battery /
- electrode material /
- energy material
-
图 3 蚀刻和分层示意图(a)、电化学电池的配置(b)、块状Ti3AlC2(c)、Ti3C2Tx在水中的分散液(d)、Ti3AlC2、Ti3C2Tx和Ti3C2Tx薄膜的XRD图谱(e)[31]
Figure 3. Schematic of the etching and delamination process (a), configuration of electrochemical cell (b), optical image of the as-received bulk Ti3AlC2 (c), aqueous dispersion of delaminated Ti3C2Tx (d), XRD patterns of Ti3AlC2, Ti3C2Tx and Ti3C2Tx (e)[31]
图 7 碳纳米纤维(CNF)“桥接”Ti3C2Tx片(a)[83]、多孔Ti3C2Tx-CNT俯视SEM图像(b)和截面SEM图像(c)、Na+和电子在多孔Ti3C2Tx-CNT中迁移(d)[84]
Figure 7. Schematic showing the preparation of MXene/carbon nanofiber (CNF) hybrid particles (a), top view (b) and cross-sectional (c) SEM images of porous Ti3C2Tx-CNT, Na+ diffusion and electron transfer within porous Ti3C2Tx-CNT electrodes (d)[84]
图 9 GeOx@MXene不同倍率下长循环性能(a)、0.2 C下GeOx@MXene不同温度容量(b)、 −40、−20和60℃时的循环性能(c)、在0.5 C下100次循环后GeOx@MXene电极的TEM图像和Ge、O、Ti、C、F的元素映射(d)[88]
Figure 9. Cycling performance of the battery with GeOx@MXene (a), GeOx@MXene at differenttemperatures under 0.2 C (b), corresponding cyclingperformance at −40, −20 and 60℃, respectively (c), TEM images and element mappings of Ge, O, Ti, C and F of the GeOx@MXene electrode after 100 cycles at 0.5 C (d)[88]
图 11 Ti 2p的XPS图谱(a)、Ti 2p的XPS对应的定量分析结果 (b)、Ti3C2的Bader电荷计算结果(c)、Co3O4@Ti3C2Tx的Bader电荷结果(d)[94]
Figure 11. XPS spectra of Ti 2p (a), percentages of various atomic Ti species (Ti, Ti2+, Ti3+ and Ti—O) of the m-Ti3C2Tx, f-Ti3C2Tx and H-4(Co3O4@Ti3C2Tx) (b), bader charge results of two-layer bare Ti3C2 (c) and Co3O4@Ti3C2Tx (d)[94]
图 13 Li在 MoS2(a)和MoS2/Mo2TiC2Ox(b)上的吸附位点、对应吸附位点的结合能(c)、MoS2/Mo2TiC2Tx倍率性能(d)、MoS2(e)和 Mo2TiC2O2(f)上最稳定的吸附构型和结合能、MoS2/Mo2TiC2Tx制备过程(g)[96]
Figure 13. Adsorption sites for Li on MoS2 (a) and MoS2/Mo2TiC2Ox (b), binding energies of Li on the surface of MoS2 and MoS2/Mo2TiC2Ox (c), rate performance for MoS2/Mo2TiC2Tx (d), the most stable adsorption configurations and binding energies of Li2S on MoS2 (e) and Mo2TiC2O2 (f), schematic illustration of the preparation of MoS2/Mo2TiC2Tx (g)[96]
图 15 BPQD/Ti3C2合成过程(a)、BPQD/Ti3C2倍率性能(b)和循环性能(c)、BPQD/Ti3C2电极放电过程中的DMES机制(d)[101]
Figure 15. Schematic illustration of the formation process of the BPQD/Ti3C2 composite (a), rate performance of the BPQD/Ti3C2 composite electrode followed with a cycling performance at 100 mA·g −1 (b), long cycling performance of the BPQD/Ti3C2 composite electrode at a high current rate of 1 000 mA·g −1 (c), schematic illustration showing the DMES mechanism involved in the discharge process of the BPQD/Ti3C2 electrodes (d)[101]
图 17 NaTi1.5O8.3制备过程[105](a)、TiS2@CPVP制备过程(b)、TEM图像(c)、倍率性能(d)和循环性能(e)[106]
Figure 17. Schematic of the fabrication of NaTi1.5O8.3[105](a), schematic of the synthesis of PVP derived carbon confined TiS2 nanosheets (b), TEM image (c), rate capability (d) and long cycling performance (e) of TiS2@CPVP[106]
-
[1] SONG Z, ZHOU H. Towards sustainable and versatile energy storage devices: An overview of organic electrode materials[J]. Energy and Environmental Science,2013,6(8):2280-2301. [2] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry,2015,7(1):19-29. [3] CHU S, CUI Y, LIU N, et al. The path towards sustainable energy[J]. Nature Materials,2017,16(1):16-22. [4] DUNN B, KAMATH H, TARASCON J M, et al. Electrical energy storage for the grid: A battery of choices[J]. Science,2011,334(6058):928-935. [5] LUO X, WANG J, DOONER M, et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied Energy,2015,137(C):511-536. [6] CHOI N, CHEN Z, FREUNBERGER S A, et al. Challenges facing Lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie,2012,51(40):9994-10024. [7] WU X, CHEN Y, XING Z, et al. Advanced carbon-based anodes for potassium-ion batteries[J]. Advanced Energy Materials,2019,9(21):1900343. [8] BONACCORSO F, COLOMBO L, YU G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science,2015,347(6217):1246501. [9] TAN C, CAO X, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews,2017,117(9):6225-6331. [10] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. [11] XIONG D, LI X, BAI Z, et al. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage[J]. Small,2018,14(17):1703419. [12] SUN Y, GAO S, XIE Y. Atomically-thick two-dimensional crystals: Electronic structure regulation and energy device construction[J]. Chemical Society Reviews,2014,43(2):530-546. [13] MA L, ABNEY C W, LIN W, et al. Enantioselective catalysis with homochiral metal–organic frameworks[J]. Chemical Society Reviews,2009,38(5):1248-1256. [14] CHHOWALLA M, LIU Z, ZHANG H, et al. Two-dimensional transition metal dichalcogenide (TMD) nanosheets[J]. Chemical Society Reviews,2015,44(9):2584-2586. [15] LIU H, NEAL A T, ZHU Z, et a. Phosphorene: An unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano,2014,8(4):4033-4041. [16] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. [17] VENKATESHALU S, GRACE A. MXenes-A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond [J]. Applied Materials Today, 2020, 18: 100509. [18] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. [19] SUN Z M. Progress in research and development on MAX phases: A family of layered ternary compounds[J]. International Materials Reviews,2013,56(3):143-166. [20] BARSOUM M W. The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates[J]. Progress in Solid State Chemistry,2000,28(4):201-281. [21] XIE Y, KENT P R C. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers[J]. Physical Review B,2013,87(23):235441. [22] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2(2):34-50. [23] ANASORI B, XIE Y, BEIDAGHI M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes)[J]. ACS Nano,2015,9(10):9507-9516. [24] NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. Journal of the American Chemical Society,2013,135(43):15966-15969. [25] WANG X, KAJIYAMA S, IINUMA H, et al. Pseu-docapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors[J]. Nature Communications, 2015, 6(1): 6544. [26] KHAZAEI M, RANJBAR A, ESFARJANI K, et al. Insights into exfoliation possibility of MAX phases to MXenes[J]. Physical Chemistry Chemical Physics,2018,20(13):8579-8592. [27] CHAUDHARI N K, JIN H, KIM B, et al. MXene: An emerging two-dimensional material for future energy conversion and storage applications[J]. Journal of Materials Chemistry A,2017,5(47):24564-24579. [28] HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials,2014,26(7):2374-2381. [29] FENG A, YU Y, JIANG F, et al. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene[J]. Ceramics International,2017,43(8):6322-6328. [30] GHIDIU M, LUKATSKAYA M R, ZHAO M, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. [31] YANG S, ZHANG P, WANG F, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system[J]. Angewandte Chemie,2018,57(47):15491-15495. [32] URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3(MXene)[J]. Nanoscale,2016,8(22):11385-11391. [33] XU C, WANG L, LIU Z, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals[J]. Nature Materials,2015,14(11):1135-1141. [34] SANG X, XIE Y, LIN M W, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene[J]. ACS Nano,2016,10(10):9193-9200. [35] ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials,2017,29(18):7633-7644. [36] CHOI W, LAHIRI I, SEELABOYINA R, et al. Synthesis of graphene and its applications: A review[J]. Critical Reviews in Solid State and Materials Sciences,2010,35(1):52-71. [37] ALLEN M J, TUNG V C, KANER R B, et al. Honeycomb carbon: A review of graphene[J]. Chemical Reviews,2010,110(1):132-145. [38] VENKATESHALU S, GRACE A N. MXenes-A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond[J]. Applied Materials Today,2020,18:100509. [39] KHAZAEI M, RANJBAR A, ARAI M, et al. Topological insulators in the ordered double transition metals M2′M″C2 MXenes (M = Mo, W; M″= Ti, Zr, Hf)[J]. Physical Review B,2016,94(12):125152. [40] WENG H, RANJBAR A, LIANG Y, et al. Large-gap two-dimensional topological insulator in Oxygen functionalized MXene[J]. Physical Review B,2015,92(7):075436. [41] FASHANDI H, IVÁDY V, EKLUND P, et al. Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides[J]. Physical Review B,2015,92(15):155142. [42] LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials,2016,2(12):1600255. [43] LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science,2013,341(6153):1502-1507. [44] MASHTALIR O, COOK K M, MOCHALIN V N, et al. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media[J]. Journal of Materials Chemistry A,2014,2(35):14334-14338. [45] ZHANG C J, PINILLA S, MCEVOY N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes)[J]. Chemistry of Materials,2017,29(11):4848-4856. [46] LI Z, WANG L, SUN D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2[J]. Materials Science and Engineering: B,2015,191(Jan):33-40. [47] WANG K, ZHOU Y, XU W, et al. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets[J]. Ceramics International,2016,42(7):8419-8424. [48] ZHANG X, MA Z, ZHAO X, et al. Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes[J]. Journal of Materials Chemistry A,2015,3(9):4960-4966. [49] HU J, XU B, OUYANG C, et al. Investigations on Nb2C monolayer as promising anode material for Li or non-Li ion batteries from first-principles calculations[J]. RSC Advances,2016,6(33):27467-27474. [50] ENYASHIN A N, IVANOVSKII A L. Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes[J]. Computational and Theoretical Chemistry,2012,989:27-32. [51] LI L. Lattice dynamics and electronic structures of Ti3C2O2 and Mo2TiC2O2 (MXenes): The effect of Mo substitution[J]. Computational Materials Science,2016,124:8-14. [52] HARRIS K J, BUGNET M, NAGUIB M, et al. Direct measurement of surface termination groups and their connectivity in the 2D MXene V2CTx using NMR spectroscopy[J]. The Journal of Physical Chemistry C,2015,119(24):13713-13720. [53] HOPE M A, FORSE A C, GRIFFITH K J, et al. NMR reveals the surface functionalisation of Ti3C2 MXene[J]. Physical Chemistry Chemical Physics,2016,18(7):5099-5102. [54] HU M, HU T, LI Z, et al. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene[J]. ACS Nano,2018,12(4):3578-3586. [55] MAGNE D, MAUCHAMP V, CÉLÉRIER S, et al. Spectroscopic evidence in the visible-ultraviolet energy range of surface functionalization sites in the multilayer Ti3C2 MXene[J]. Physical Review B,2015,91(20):201409. [56] MASHTALIR O, LUKATSKAYA M R, KOLESNIKOV A I, et al. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene)[J]. Nanoscale,2016,8(17):9128-9133. [57] WANG H W, NAGUIB M, PAGE K, et al. Resolving the structure of Ti3C2Tx MXenes through multi-level structural modeling of the atomic pair dis-tribution function[J]. Chemistry of Materials, 2015, 28(1): 349–359. [58] KHAZAEI M, ARAI M, SASAKI T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides[J]. Advanced Functional Materials,2013,23(17):2185-2192. [59] LIU Y, XIAO H, GODDARD W A, et al. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes[J]. Journal of the American Chemical Society,2016,138(49):15853-15856. [60] LAI S, JEON J, JANG S K, et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: -OH, -F and -O)[J]. Nanoscale,2015,7(46):19390-19396. [61] RAN J, GAO G, LI F, et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J]. Nature Communications,2017,8(1):13907. [62] XU B, ZHU M, ZHANG W, et al. Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity[J]. Advanced Materials,2016,28(17):3333-3339. [63] PENG Q, GUO J, ZHANG Q, et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide[J]. Journal of the American Chemical Society,2014,136(11):4113-4116. [64] ZOU G, GUO J, PENG Q, et al. Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation[J]. Journal of Materials Chemistry A,2016,4(2):489-499. [65] XUAN J, WANG Z, CHEN Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance[J]. Angewandte Chemie International Edition,2016,55(47):14569-14574. [66] ER D, LI J, NAGUIB M, et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Applied Materials and Interfaces,2014,6(14):11173-11179. [67] NAGUIB M, COME J, DYATKIN B, et al. MXene: A promising transition metal carbide anode for Lithium-ion batteries[J]. Electrochemistry Communications,2012,16(1):61-64. [68] SUN D, WANG M, LI Z, et al. Two-dimensional Ti3C2 as anode material for Li-ion batteries[J]. Electrochemistry Communications,2014,94(12):80-83. [69] TANG Q, ZHOU Z, SHEN P. Are MXenes promising anode materials for Li-ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) Monolayer[J]. Journal of the American Chemical Society,2012,134(40):16909-16916. [70] XIE Y, DALLAGNESE Y, NAGUIB M, et al. Prediction and characterization of MXene nanosheet anodes for non-Lithium-ion batteries[J]. ACS Nano,2014,8(9):9606-9615. [71] XIE Y, NAGUIB M, MOCHALIN V N, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides[J]. Journal of the American Chemical Society,2014,136(17):6385-6394. [72] KAJIYAMA S, SZABOVA L, IINUMA H, et al. Enhanced Li-Ion accessibility in MXene titanium carbide by steric chloride termination[J]. Advanced Energy Materials,2017,7(9):1601873. [73] LI D, CHEN X, XIANG P, et al. Chalcogenated-Ti3C2X2 MXene (X=O, S, Se and Te) as a high-performance anode material for Li-ion batteries[J]. Applied Surface Science,2020,501(31):144221. [74] MASHTALIR O, NAGUIB M, MOCHALIN V, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications,2013,4(1):1716. [75] XIA Y, MATHIS T S, ZHAO M Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes[J]. Nature,2018,557(7705):409-412. [76] WANG X, SUN G, ROUTH P, et al. Heteroatom-doped graphene materials: syntheses, properties and applications[J]. Chemical Society Reviews,2014,43(20):7067-7098. [77] WEN Y, RUFFORD T E, CHEN X, et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors[J]. Nano Energy,2017,38:368-376. [78] LI J, YAN D, HOU S, et al. Improved Sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping[J]. Journal of Materials Chemistry A,2018,6(3):1234-1243. [79] YANG C, QUE W, TANG Y, et al. Nitrogen and sulfur Co-doped 2D titanium carbides for enhanced electrochemical performance[J]. Journal of The Electrochemical Society,2017,164(9):A1939-A1945. [80] LIAN P, DONG Y, WU Z S, et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity Sodium and potassium ion batteries[J]. Nano Energy,2017,40:1-8. [81] ZHAO D, CLITES M, YING G, et al. Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for Sodium-ion storage[J]. Chemical Communications,2018,54(36):4533-4536. [82] ZHAO Q, ZHU Q, MIAO J, et al. Flexible 3D porous MXene foam for high-performance Lithium-ion batteries[J]. Small,2019,15(51):1904293. [83] LIN Z, SUN D, HUANG Q, et al. Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for Lithium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(27):14096-14100. [84] XIE X, ZHAO M Q, ANASORI B, et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for Sodium-based energy storage devices[J]. Nano Energy,2016,26:513-523. [85] MA Z, ZHOU X, DENG W, et al. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage[J]. ACS Applied Materials and Interfaces,2018,10(4):3634-3643. [86] SUN N, ZHU Q, ANASORI B, et al. MXene-Bonded flexible hard carbon film as anode for stable Na/K-Ion storage[J]. Advanced Functional Materials,2019,29(51):1906282. [87] LI D, WANG H, ZHOU T, et al. Unique structural design and strategies for germanium-based anode materials toward enhanced Lithium storage[J]. Advanced Energy Materials,2017,7(23):1700488. [88] SHANG M, CHEN X, LI B, et al. A Fast charge/discharge and wide-temperature battery with a germanium oxide layer on a Ti3C2 MXene matrix as anode[J]. ACS Nano,2020,14(3):3678-3686. [89] XU Q, SUN J, YIN Y, et al. Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance Lithium-ion battery anodes[J]. Advanced Functional Materials,2018,28(8):1705235. [90] LIU Z, YU Q, ZHAO Y, et al. Silicon oxides: A promising family of anode materials for Lithium-ion batteries[J]. Chemical Society Reviews,2019,48(1):285-309. [91] MU G, MU D, WU B, et al. Microsphere-like SiO2/MXene hybrid material enabling high performance anode for Lithium ion batteries[J]. Small,2020,16(3):1905430. [92] XIE K, WU P, ZHOU Y, et al. Nitrogen-doped carbon-wrapped porous single-crystalline CoO nanocubes for high-performance Lithium storage[J]. ACS Applied Materials and Interfaces,2014,6(13):10602-10607. [93] KANG W, ZHANG Y, FAN L, et al. Metal-Organic framework derived porous hollow Co3O4/N-C polyhedron composite with excellent energy storage capability[J]. ACS Applied Materials and Interfaces,2017,9(12):10602-10609. [94] SUN X, TAN K, LIU Y, et al. A two-dimensional assembly of ultrafine cobalt oxide nanocrystallites anchored on single-layer Ti3C2Tx nanosheets with enhanced Lithium storage for Li-ion batteries[J]. Nanoscale,2019,11(36):16755-16766. [95] WANG Y, LI Y, QIU Z, et al. Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for Lithium-ion batteries[J]. Journal of Materials Chemistry A,2018,6(24):11189-11197. [96] CHEN C, XIE X, ANASORI B, et al. MoS2-on-MXene heterostructures as highly reversible anode materials for Lithium-ion batteries[J]. Angewandte Chemie International Edition,2018,57(7):1846-1850. [97] LIN Y C, ZHANG W, HUANG J, et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization[J]. Nanoscale,2012,4(20):6637-6641. [98] WU Y, NIE P, WU L, et al. 2D MXene/SnS2 composites as high-performance anodes for Sodium ion batteries[J]. Chemical Engineering Journal,2018,334:932-938. [99] CHEN L, ZHOU G, LIU Z, et al. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible Lithium ion battery[J]. Advanced Materials,2016,28(3):510-517. [100] LIU H, DU Y, DENG Y, et al. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications[J]. Chemical Society Reviews,2015,44(9):2732-2743. [101] MENG R, HUANG J, FENG Y, et al. Black phosphorus quantum dot/Ti3C2 MXene nanosheet composites for efficient electrochemical Lithium/Sodium-ion storage[J]. Advanced Energy Materials,2018,8(26):1801514. [102] ZHANG S, LI X, YANG W, et al. Novel synthesis of red phosphorus nanodot/Ti3C2Tx MXenes from low-Cost Ti3SiC2 MAX phases for superior Lithium- and Sodium-ion batteries[J]. ACS Applied Materials and Interfaces,2019,11(45):42086-42093. [103] TAO M, DU G, YANG T, et al. MXene-derived three-dimensional carbon nanotube network encapsulate CoS2 nanoparticles as an anode material for solid-state Sodium-ion batteries[J]. Journal of Materials Chemistry A,2020,8(6):3018-3026. [104] SHAO B B, LIU Z F, ZENG G M, et al. Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): Synthesis, properties, applications and prospects[J]. Journal of Materials Chemistry A,2020,8(11):7508-7535. [105] DONG Y, WU Z, ZHENG S, et al. Ti3C2 MXene-Derived Sodium/potassium titanate nanoribbons for high-performance Sodium/potassium ion batteries with enhanced capacities[J]. ACS Nano,2017,11(5):4792-4800. [106] TANG J, HUANG X, LIN T, et al. MXene derived TiS2 nanosheets for high-rate and long-life Sodium-ion capacitors[J]. Energy Storage Materials,2020,26:550-559. [107] JIAO L, SEOW J Y R, SKINNER W S, et al. Metal–organic frameworks: Structures and functional applications[J]. Materials Today,2019,27:43-68. [108] WU H, ALMALKI M, XU X, et al. MXene derived metal-organic frameworks[J]. Journal of the American Chemical Society,2019,141(51):20037-20042. [109] ZHAO X, XU H, HUI Z, et al. Electrostatically assembling 2D nanosheets of MXene and MOF-derivatives into 3D hollow frameworks for enhanced Lithium storage[J]. Small,2019,15(47):1904255. [110] LIU D, SHADIKE Z, LIN R, et al. Review of recent development of in situ/operando characterization techniques for Lithium battery research[J]. Advanced Materials,2019,31(28):1806620.