留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti基MXene及其复合材料在金属离子电池中的进展

刘浩 姚卫棠

刘浩, 姚卫棠. Ti基MXene及其复合材料在金属离子电池中的进展[J]. 复合材料学报, 2020, 37(12): 2984-3003. doi: 10.13801/j.cnki.fhclxb.20200717.001
引用本文: 刘浩, 姚卫棠. Ti基MXene及其复合材料在金属离子电池中的进展[J]. 复合材料学报, 2020, 37(12): 2984-3003. doi: 10.13801/j.cnki.fhclxb.20200717.001
LIU Hao, YAO Weitang. Research progress of Ti-based MXene and its composites in metal-ion batteries[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 2984-3003. doi: 10.13801/j.cnki.fhclxb.20200717.001
Citation: LIU Hao, YAO Weitang. Research progress of Ti-based MXene and its composites in metal-ion batteries[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 2984-3003. doi: 10.13801/j.cnki.fhclxb.20200717.001

Ti基MXene及其复合材料在金属离子电池中的进展

doi: 10.13801/j.cnki.fhclxb.20200717.001
基金项目: 国家自然科学基金(21671160)
详细信息
    通讯作者:

    姚卫棠,博士,教授,博士生导师,研究方向为能源材料储存与转换 E-mail:wtyao@ustc.edu.cn

  • 中图分类号: TB34;TM912

Research progress of Ti-based MXene and its composites in metal-ion batteries

  • 摘要: 二维过渡金属碳(氮或碳氮)化物MXene自2011年首次报告后,其家族成员不断增加,目前已有超过20种MXene被成功合成。凭借独特的层状结构,出色的物理化学性质和可设计的表面官能团特性,MXene被认为是极具潜力的电极材料。近年来,MXene及其复合材料在储能领域进展显著。为此,本文综述了Ti基MXene及其复合材料在Li离子电池和Na离子电池中的研究进展,并结合其制备方法和特性,详细介绍了电池性能提升策略或机制。最后,指出了MXene及其复合材料构建高性能电池面临的挑战,并对未来前景进行了展望。

     

  • 图  1  层状M3AX2晶体结构(a)、单层M3X2的侧视图 (b)和俯视图(c)[21]

    Figure  1.  Crystal structure of layered M3AX2 solid phase (a), side (b) and top (c) views of M3X2 monolayer[21]

    图  2  MXene“粘土”合成及电极制备原理图[30]

    Figure  2.  Schematic of MXene clay synthesis and electrode preparation[30]

    图  3  蚀刻和分层示意图(a)、电化学电池的配置(b)、块状Ti3AlC2(c)、Ti3C2Tx在水中的分散液(d)、Ti3AlC2、Ti3C2Tx和Ti3C2Tx薄膜的XRD图谱(e)[31]

    Figure  3.  Schematic of the etching and delamination process (a), configuration of electrochemical cell (b), optical image of the as-received bulk Ti3AlC2 (c), aqueous dispersion of delaminated Ti3C2Tx (d), XRD patterns of Ti3AlC2, Ti3C2Tx and Ti3C2Tx (e)[31]

    图  4  MXene平行排列的离子迁移(a)、MXene竖直排列的离子迁移(b)[75]

    Figure  4.  Ion transport in horizontally stacked (a) and vertically aligned (b) Ti3C2Tx MXene films[75]

    图  5  Ti3C2纳米带合成过程(a)及Ti3AlC2(b)、 Ti3C2纳米片(c)、三维多孔Ti3C2(d)的SEM图像[80]

    Figure  5.  Schematic of synthesis of Ti3C2 nanoribbons (a) and SEM images of the corresponding Ti3AlC2 (b) , Ti3C2 nanosheets (c) andTi3C2 nanoribbons (d)[80]

    图  6  Ti3C2Tx皱缩后SEM图像(a)、Ti3C2Tx加入NaOH后引起结絮(b)[80]、3D多孔MXene泡沫制备过程(c)[81]

    Figure  6.  SEM images of Ti3C2Tx flocculated networks (a), photographs of Ti3C2Tx MXene colloidal suspensions (b)[80], schematic illustration of the preparation process of 3D porous MXene foam (c)[81]

    图  7  碳纳米纤维(CNF)“桥接”Ti3C2Tx片(a)[83]、多孔Ti3C2Tx-CNT俯视SEM图像(b)和截面SEM图像(c)、Na+和电子在多孔Ti3C2Tx-CNT中迁移(d)[84]

    Figure  7.  Schematic showing the preparation of MXene/carbon nanofiber (CNF) hybrid particles (a), top view (b) and cross-sectional (c) SEM images of porous Ti3C2Tx-CNT, Na+ diffusion and electron transfer within porous Ti3C2Tx-CNT electrodes (d)[84]

    图  8  MXene、rGO和MXene-rGO的合成示意图(a) 、Ti3C2-RGO复合材料倍率性能(b)、Ti3C2-RGO复合材料长循环性能(c)[85]

    Figure  8.  Schematic illustration of the fabrication of the MXene, rGO, and MXene-rGO films (a), rate capability of different samples (b), cycle performance of different samples at 1 A·g−1 (c)[85]

    图  9  GeOx@MXene不同倍率下长循环性能(a)、0.2 C下GeOx@MXene不同温度容量(b)、 −40、−20和60℃时的循环性能(c)、在0.5 C下100次循环后GeOx@MXene电极的TEM图像和Ge、O、Ti、C、F的元素映射(d)[88]

    Figure  9.  Cycling performance of the battery with GeOx@MXene (a), GeOx@MXene at differenttemperatures under 0.2 C (b), corresponding cyclingperformance at −40, −20 and 60℃, respectively (c), TEM images and element mappings of Ge, O, Ti, C and F of the GeOx@MXene electrode after 100 cycles at 0.5 C (d)[88]

    图  10  SiO2/MXene微球制备过程(a)、SiO2/MXene微球的SEM图像(b)

    Figure  10.  Schematic diagram for the synthesis process of SiO2/MXene microspheres (a), SEM image of SiO2/MXene (b)

    图  11  Ti 2p的XPS图谱(a)、Ti 2p的XPS对应的定量分析结果 (b)、Ti3C2的Bader电荷计算结果(c)、Co3O4@Ti3C2Tx的Bader电荷结果(d)[94]

    Figure  11.  XPS spectra of Ti 2p (a), percentages of various atomic Ti species (Ti, Ti2+, Ti3+ and Ti—O) of the m-Ti3C2Tx, f-Ti3C2Tx and H-4(Co3O4@Ti3C2Tx) (b), bader charge results of two-layer bare Ti3C2 (c) and Co3O4@Ti3C2Tx (d)[94]

    图  12  Fe3O4@Ti3C2Tx电极分别经过30次循环(a)、300次循环(b)、1 000次循环(c)的SEM图像和经循环后Fe3O4@Ti3C2Tx电极原位XRD图谱(d)[95]

    Figure  12.  SEM images of the Fe3O4@Ti3C2Tx electrode after 30 cycles (a), 300 cycles (b) , and 1000 cycles (c) and ex-situ XRD pattern of Fe3O4@Ti3C2Tx electrode after 30, 300 and 1000 cycles (d)[95]

    图  13  Li在 MoS2(a)和MoS2/Mo2TiC2Ox(b)上的吸附位点、对应吸附位点的结合能(c)、MoS2/Mo2TiC2Tx倍率性能(d)、MoS2(e)和 Mo2TiC2O2(f)上最稳定的吸附构型和结合能、MoS2/Mo2TiC2Tx制备过程(g)[96]

    Figure  13.  Adsorption sites for Li on MoS2 (a) and MoS2/Mo2TiC2Ox (b), binding energies of Li on the surface of MoS2 and MoS2/Mo2TiC2Ox (c), rate performance for MoS2/Mo2TiC2Tx (d), the most stable adsorption configurations and binding energies of Li2S on MoS2 (e) and Mo2TiC2O2 (f), schematic illustration of the preparation of MoS2/Mo2TiC2Tx (g)[96]

    图  14  真空辅助抽滤合成MXene/SnS2(a)、不同比例MXene/SnS2的循环性能(b)和倍率性能(c)[98]

    Figure  14.  Schematic illustration of the preparation of MXene/SnS2 composite by vacuum-assisted filtration(a), cycling performance (b) and rate performance (c) of MXene/SnS2 10∶1, 5∶1, 2∶1 and MXene[98]

    图  15  BPQD/Ti3C2合成过程(a)、BPQD/Ti3C2倍率性能(b)和循环性能(c)、BPQD/Ti3C2电极放电过程中的DMES机制(d)[101]

    Figure  15.  Schematic illustration of the formation process of the BPQD/Ti3C2 composite (a), rate performance of the BPQD/Ti3C2 composite electrode followed with a cycling performance at 100 mA·g −1 (b), long cycling performance of the BPQD/Ti3C2 composite electrode at a high current rate of 1 000 mA·g −1 (c), schematic illustration showing the DMES mechanism involved in the discharge process of the BPQD/Ti3C2 electrodes (d)[101]

    图  16  BP/Ti3C2Tx倍率性能(a)、 BP/Ti3C2Tx长循环性能(b)[102]

    Figure  16.  Rate performances of BP/Ti3C2Tx (a), cycling performance of BP/Ti3C2Tx (b)[102]

    图  17  NaTi1.5O8.3制备过程[105](a)、TiS2@CPVP制备过程(b)、TEM图像(c)、倍率性能(d)和循环性能(e)[106]

    Figure  17.  Schematic of the fabrication of NaTi1.5O8.3[105](a), schematic of the synthesis of PVP derived carbon confined TiS2 nanosheets (b), TEM image (c), rate capability (d) and long cycling performance (e) of TiS2@CPVP[106]

    图  18  CoO/Co2Mo3O8@MXene的制备过程(a)、倍率性能(b)和长循环性能(c)[109]

    Figure  18.  Schematic illustration showing the synthesis of CoO/Co2Mo3O8@MXene (a) , rate capabilities (b) and cycling behaviors (c) of CoO/Co2Mo3O8@MXene[109]

  • [1] SONG Z, ZHOU H. Towards sustainable and versatile energy storage devices: An overview of organic electrode materials[J]. Energy and Environmental Science,2013,6(8):2280-2301.
    [2] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry,2015,7(1):19-29.
    [3] CHU S, CUI Y, LIU N, et al. The path towards sustainable energy[J]. Nature Materials,2017,16(1):16-22.
    [4] DUNN B, KAMATH H, TARASCON J M, et al. Electrical energy storage for the grid: A battery of choices[J]. Science,2011,334(6058):928-935.
    [5] LUO X, WANG J, DOONER M, et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied Energy,2015,137(C):511-536.
    [6] CHOI N, CHEN Z, FREUNBERGER S A, et al. Challenges facing Lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie,2012,51(40):9994-10024.
    [7] WU X, CHEN Y, XING Z, et al. Advanced carbon-based anodes for potassium-ion batteries[J]. Advanced Energy Materials,2019,9(21):1900343.
    [8] BONACCORSO F, COLOMBO L, YU G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science,2015,347(6217):1246501.
    [9] TAN C, CAO X, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews,2017,117(9):6225-6331.
    [10] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
    [11] XIONG D, LI X, BAI Z, et al. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage[J]. Small,2018,14(17):1703419.
    [12] SUN Y, GAO S, XIE Y. Atomically-thick two-dimensional crystals: Electronic structure regulation and energy device construction[J]. Chemical Society Reviews,2014,43(2):530-546.
    [13] MA L, ABNEY C W, LIN W, et al. Enantioselective catalysis with homochiral metal–organic frameworks[J]. Chemical Society Reviews,2009,38(5):1248-1256.
    [14] CHHOWALLA M, LIU Z, ZHANG H, et al. Two-dimensional transition metal dichalcogenide (TMD) nanosheets[J]. Chemical Society Reviews,2015,44(9):2584-2586.
    [15] LIU H, NEAL A T, ZHU Z, et a. Phosphorene: An unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano,2014,8(4):4033-4041.
    [16] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253.
    [17] VENKATESHALU S, GRACE A. MXenes-A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond [J]. Applied Materials Today, 2020, 18: 100509.
    [18] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005.
    [19] SUN Z M. Progress in research and development on MAX phases: A family of layered ternary compounds[J]. International Materials Reviews,2013,56(3):143-166.
    [20] BARSOUM M W. The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates[J]. Progress in Solid State Chemistry,2000,28(4):201-281.
    [21] XIE Y, KENT P R C. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers[J]. Physical Review B,2013,87(23):235441.
    [22] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2(2):34-50.
    [23] ANASORI B, XIE Y, BEIDAGHI M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes)[J]. ACS Nano,2015,9(10):9507-9516.
    [24] NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. Journal of the American Chemical Society,2013,135(43):15966-15969.
    [25] WANG X, KAJIYAMA S, IINUMA H, et al. Pseu-docapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors[J]. Nature Communications, 2015, 6(1): 6544.
    [26] KHAZAEI M, RANJBAR A, ESFARJANI K, et al. Insights into exfoliation possibility of MAX phases to MXenes[J]. Physical Chemistry Chemical Physics,2018,20(13):8579-8592.
    [27] CHAUDHARI N K, JIN H, KIM B, et al. MXene: An emerging two-dimensional material for future energy conversion and storage applications[J]. Journal of Materials Chemistry A,2017,5(47):24564-24579.
    [28] HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials,2014,26(7):2374-2381.
    [29] FENG A, YU Y, JIANG F, et al. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene[J]. Ceramics International,2017,43(8):6322-6328.
    [30] GHIDIU M, LUKATSKAYA M R, ZHAO M, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516(7529):78-81.
    [31] YANG S, ZHANG P, WANG F, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system[J]. Angewandte Chemie,2018,57(47):15491-15495.
    [32] URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3(MXene)[J]. Nanoscale,2016,8(22):11385-11391.
    [33] XU C, WANG L, LIU Z, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals[J]. Nature Materials,2015,14(11):1135-1141.
    [34] SANG X, XIE Y, LIN M W, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene[J]. ACS Nano,2016,10(10):9193-9200.
    [35] ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials,2017,29(18):7633-7644.
    [36] CHOI W, LAHIRI I, SEELABOYINA R, et al. Synthesis of graphene and its applications: A review[J]. Critical Reviews in Solid State and Materials Sciences,2010,35(1):52-71.
    [37] ALLEN M J, TUNG V C, KANER R B, et al. Honeycomb carbon: A review of graphene[J]. Chemical Reviews,2010,110(1):132-145.
    [38] VENKATESHALU S, GRACE A N. MXenes-A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond[J]. Applied Materials Today,2020,18:100509.
    [39] KHAZAEI M, RANJBAR A, ARAI M, et al. Topological insulators in the ordered double transition metals M2′M″C2 MXenes (M = Mo, W; M″= Ti, Zr, Hf)[J]. Physical Review B,2016,94(12):125152.
    [40] WENG H, RANJBAR A, LIANG Y, et al. Large-gap two-dimensional topological insulator in Oxygen functionalized MXene[J]. Physical Review B,2015,92(7):075436.
    [41] FASHANDI H, IVÁDY V, EKLUND P, et al. Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides[J]. Physical Review B,2015,92(15):155142.
    [42] LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials,2016,2(12):1600255.
    [43] LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science,2013,341(6153):1502-1507.
    [44] MASHTALIR O, COOK K M, MOCHALIN V N, et al. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media[J]. Journal of Materials Chemistry A,2014,2(35):14334-14338.
    [45] ZHANG C J, PINILLA S, MCEVOY N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes)[J]. Chemistry of Materials,2017,29(11):4848-4856.
    [46] LI Z, WANG L, SUN D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2[J]. Materials Science and Engineering: B,2015,191(Jan):33-40.
    [47] WANG K, ZHOU Y, XU W, et al. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets[J]. Ceramics International,2016,42(7):8419-8424.
    [48] ZHANG X, MA Z, ZHAO X, et al. Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes[J]. Journal of Materials Chemistry A,2015,3(9):4960-4966.
    [49] HU J, XU B, OUYANG C, et al. Investigations on Nb2C monolayer as promising anode material for Li or non-Li ion batteries from first-principles calculations[J]. RSC Advances,2016,6(33):27467-27474.
    [50] ENYASHIN A N, IVANOVSKII A L. Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes[J]. Computational and Theoretical Chemistry,2012,989:27-32.
    [51] LI L. Lattice dynamics and electronic structures of Ti3C2O2 and Mo2TiC2O2 (MXenes): The effect of Mo substitution[J]. Computational Materials Science,2016,124:8-14.
    [52] HARRIS K J, BUGNET M, NAGUIB M, et al. Direct measurement of surface termination groups and their connectivity in the 2D MXene V2CTx using NMR spectroscopy[J]. The Journal of Physical Chemistry C,2015,119(24):13713-13720.
    [53] HOPE M A, FORSE A C, GRIFFITH K J, et al. NMR reveals the surface functionalisation of Ti3C2 MXene[J]. Physical Chemistry Chemical Physics,2016,18(7):5099-5102.
    [54] HU M, HU T, LI Z, et al. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene[J]. ACS Nano,2018,12(4):3578-3586.
    [55] MAGNE D, MAUCHAMP V, CÉLÉRIER S, et al. Spectroscopic evidence in the visible-ultraviolet energy range of surface functionalization sites in the multilayer Ti3C2 MXene[J]. Physical Review B,2015,91(20):201409.
    [56] MASHTALIR O, LUKATSKAYA M R, KOLESNIKOV A I, et al. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene)[J]. Nanoscale,2016,8(17):9128-9133.
    [57] WANG H W, NAGUIB M, PAGE K, et al. Resolving the structure of Ti3C2Tx MXenes through multi-level structural modeling of the atomic pair dis-tribution function[J]. Chemistry of Materials, 2015, 28(1): 349–359.
    [58] KHAZAEI M, ARAI M, SASAKI T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides[J]. Advanced Functional Materials,2013,23(17):2185-2192.
    [59] LIU Y, XIAO H, GODDARD W A, et al. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes[J]. Journal of the American Chemical Society,2016,138(49):15853-15856.
    [60] LAI S, JEON J, JANG S K, et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: -OH, -F and -O)[J]. Nanoscale,2015,7(46):19390-19396.
    [61] RAN J, GAO G, LI F, et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J]. Nature Communications,2017,8(1):13907.
    [62] XU B, ZHU M, ZHANG W, et al. Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity[J]. Advanced Materials,2016,28(17):3333-3339.
    [63] PENG Q, GUO J, ZHANG Q, et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide[J]. Journal of the American Chemical Society,2014,136(11):4113-4116.
    [64] ZOU G, GUO J, PENG Q, et al. Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation[J]. Journal of Materials Chemistry A,2016,4(2):489-499.
    [65] XUAN J, WANG Z, CHEN Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance[J]. Angewandte Chemie International Edition,2016,55(47):14569-14574.
    [66] ER D, LI J, NAGUIB M, et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Applied Materials and Interfaces,2014,6(14):11173-11179.
    [67] NAGUIB M, COME J, DYATKIN B, et al. MXene: A promising transition metal carbide anode for Lithium-ion batteries[J]. Electrochemistry Communications,2012,16(1):61-64.
    [68] SUN D, WANG M, LI Z, et al. Two-dimensional Ti3C2 as anode material for Li-ion batteries[J]. Electrochemistry Communications,2014,94(12):80-83.
    [69] TANG Q, ZHOU Z, SHEN P. Are MXenes promising anode materials for Li-ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) Monolayer[J]. Journal of the American Chemical Society,2012,134(40):16909-16916.
    [70] XIE Y, DALLAGNESE Y, NAGUIB M, et al. Prediction and characterization of MXene nanosheet anodes for non-Lithium-ion batteries[J]. ACS Nano,2014,8(9):9606-9615.
    [71] XIE Y, NAGUIB M, MOCHALIN V N, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides[J]. Journal of the American Chemical Society,2014,136(17):6385-6394.
    [72] KAJIYAMA S, SZABOVA L, IINUMA H, et al. Enhanced Li-Ion accessibility in MXene titanium carbide by steric chloride termination[J]. Advanced Energy Materials,2017,7(9):1601873.
    [73] LI D, CHEN X, XIANG P, et al. Chalcogenated-Ti3C2X2 MXene (X=O, S, Se and Te) as a high-performance anode material for Li-ion batteries[J]. Applied Surface Science,2020,501(31):144221.
    [74] MASHTALIR O, NAGUIB M, MOCHALIN V, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications,2013,4(1):1716.
    [75] XIA Y, MATHIS T S, ZHAO M Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes[J]. Nature,2018,557(7705):409-412.
    [76] WANG X, SUN G, ROUTH P, et al. Heteroatom-doped graphene materials: syntheses, properties and applications[J]. Chemical Society Reviews,2014,43(20):7067-7098.
    [77] WEN Y, RUFFORD T E, CHEN X, et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors[J]. Nano Energy,2017,38:368-376.
    [78] LI J, YAN D, HOU S, et al. Improved Sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping[J]. Journal of Materials Chemistry A,2018,6(3):1234-1243.
    [79] YANG C, QUE W, TANG Y, et al. Nitrogen and sulfur Co-doped 2D titanium carbides for enhanced electrochemical performance[J]. Journal of The Electrochemical Society,2017,164(9):A1939-A1945.
    [80] LIAN P, DONG Y, WU Z S, et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity Sodium and potassium ion batteries[J]. Nano Energy,2017,40:1-8.
    [81] ZHAO D, CLITES M, YING G, et al. Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for Sodium-ion storage[J]. Chemical Communications,2018,54(36):4533-4536.
    [82] ZHAO Q, ZHU Q, MIAO J, et al. Flexible 3D porous MXene foam for high-performance Lithium-ion batteries[J]. Small,2019,15(51):1904293.
    [83] LIN Z, SUN D, HUANG Q, et al. Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for Lithium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(27):14096-14100.
    [84] XIE X, ZHAO M Q, ANASORI B, et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for Sodium-based energy storage devices[J]. Nano Energy,2016,26:513-523.
    [85] MA Z, ZHOU X, DENG W, et al. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage[J]. ACS Applied Materials and Interfaces,2018,10(4):3634-3643.
    [86] SUN N, ZHU Q, ANASORI B, et al. MXene-Bonded flexible hard carbon film as anode for stable Na/K-Ion storage[J]. Advanced Functional Materials,2019,29(51):1906282.
    [87] LI D, WANG H, ZHOU T, et al. Unique structural design and strategies for germanium-based anode materials toward enhanced Lithium storage[J]. Advanced Energy Materials,2017,7(23):1700488.
    [88] SHANG M, CHEN X, LI B, et al. A Fast charge/discharge and wide-temperature battery with a germanium oxide layer on a Ti3C2 MXene matrix as anode[J]. ACS Nano,2020,14(3):3678-3686.
    [89] XU Q, SUN J, YIN Y, et al. Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance Lithium-ion battery anodes[J]. Advanced Functional Materials,2018,28(8):1705235.
    [90] LIU Z, YU Q, ZHAO Y, et al. Silicon oxides: A promising family of anode materials for Lithium-ion batteries[J]. Chemical Society Reviews,2019,48(1):285-309.
    [91] MU G, MU D, WU B, et al. Microsphere-like SiO2/MXene hybrid material enabling high performance anode for Lithium ion batteries[J]. Small,2020,16(3):1905430.
    [92] XIE K, WU P, ZHOU Y, et al. Nitrogen-doped carbon-wrapped porous single-crystalline CoO nanocubes for high-performance Lithium storage[J]. ACS Applied Materials and Interfaces,2014,6(13):10602-10607.
    [93] KANG W, ZHANG Y, FAN L, et al. Metal-Organic framework derived porous hollow Co3O4/N-C polyhedron composite with excellent energy storage capability[J]. ACS Applied Materials and Interfaces,2017,9(12):10602-10609.
    [94] SUN X, TAN K, LIU Y, et al. A two-dimensional assembly of ultrafine cobalt oxide nanocrystallites anchored on single-layer Ti3C2Tx nanosheets with enhanced Lithium storage for Li-ion batteries[J]. Nanoscale,2019,11(36):16755-16766.
    [95] WANG Y, LI Y, QIU Z, et al. Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for Lithium-ion batteries[J]. Journal of Materials Chemistry A,2018,6(24):11189-11197.
    [96] CHEN C, XIE X, ANASORI B, et al. MoS2-on-MXene heterostructures as highly reversible anode materials for Lithium-ion batteries[J]. Angewandte Chemie International Edition,2018,57(7):1846-1850.
    [97] LIN Y C, ZHANG W, HUANG J, et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization[J]. Nanoscale,2012,4(20):6637-6641.
    [98] WU Y, NIE P, WU L, et al. 2D MXene/SnS2 composites as high-performance anodes for Sodium ion batteries[J]. Chemical Engineering Journal,2018,334:932-938.
    [99] CHEN L, ZHOU G, LIU Z, et al. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible Lithium ion battery[J]. Advanced Materials,2016,28(3):510-517.
    [100] LIU H, DU Y, DENG Y, et al. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications[J]. Chemical Society Reviews,2015,44(9):2732-2743.
    [101] MENG R, HUANG J, FENG Y, et al. Black phosphorus quantum dot/Ti3C2 MXene nanosheet composites for efficient electrochemical Lithium/Sodium-ion storage[J]. Advanced Energy Materials,2018,8(26):1801514.
    [102] ZHANG S, LI X, YANG W, et al. Novel synthesis of red phosphorus nanodot/Ti3C2Tx MXenes from low-Cost Ti3SiC2 MAX phases for superior Lithium- and Sodium-ion batteries[J]. ACS Applied Materials and Interfaces,2019,11(45):42086-42093.
    [103] TAO M, DU G, YANG T, et al. MXene-derived three-dimensional carbon nanotube network encapsulate CoS2 nanoparticles as an anode material for solid-state Sodium-ion batteries[J]. Journal of Materials Chemistry A,2020,8(6):3018-3026.
    [104] SHAO B B, LIU Z F, ZENG G M, et al. Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): Synthesis, properties, applications and prospects[J]. Journal of Materials Chemistry A,2020,8(11):7508-7535.
    [105] DONG Y, WU Z, ZHENG S, et al. Ti3C2 MXene-Derived Sodium/potassium titanate nanoribbons for high-performance Sodium/potassium ion batteries with enhanced capacities[J]. ACS Nano,2017,11(5):4792-4800.
    [106] TANG J, HUANG X, LIN T, et al. MXene derived TiS2 nanosheets for high-rate and long-life Sodium-ion capacitors[J]. Energy Storage Materials,2020,26:550-559.
    [107] JIAO L, SEOW J Y R, SKINNER W S, et al. Metal–organic frameworks: Structures and functional applications[J]. Materials Today,2019,27:43-68.
    [108] WU H, ALMALKI M, XU X, et al. MXene derived metal-organic frameworks[J]. Journal of the American Chemical Society,2019,141(51):20037-20042.
    [109] ZHAO X, XU H, HUI Z, et al. Electrostatically assembling 2D nanosheets of MXene and MOF-derivatives into 3D hollow frameworks for enhanced Lithium storage[J]. Small,2019,15(47):1904255.
    [110] LIU D, SHADIKE Z, LIN R, et al. Review of recent development of in situ/operando characterization techniques for Lithium battery research[J]. Advanced Materials,2019,31(28):1806620.
  • 加载中
图(18)
计量
  • 文章访问数:  1430
  • HTML全文浏览量:  660
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-21
  • 录用日期:  2020-07-08
  • 网络出版日期:  2020-07-17
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回