留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄层化碳布缝合碳/碳复合材料制备与性能

刘宇峰 李同起 冯志海 王金明 张莹 王雅雷 熊翔

刘宇峰, 李同起, 冯志海, 等. 薄层化碳布缝合碳/碳复合材料制备与性能[J]. 复合材料学报, 2021, 38(4): 1210-1222. doi: 10.13801/j.cnki.fhclxb.20200713.005
引用本文: 刘宇峰, 李同起, 冯志海, 等. 薄层化碳布缝合碳/碳复合材料制备与性能[J]. 复合材料学报, 2021, 38(4): 1210-1222. doi: 10.13801/j.cnki.fhclxb.20200713.005
LIU Yufeng, LI Tongqi, FENG Zhihai, et al. Preparation and properties of spreading carbon cloth stitched C/C composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1210-1222. doi: 10.13801/j.cnki.fhclxb.20200713.005
Citation: LIU Yufeng, LI Tongqi, FENG Zhihai, et al. Preparation and properties of spreading carbon cloth stitched C/C composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1210-1222. doi: 10.13801/j.cnki.fhclxb.20200713.005

薄层化碳布缝合碳/碳复合材料制备与性能

doi: 10.13801/j.cnki.fhclxb.20200713.005
基金项目: 装发共用技术预研项目(41422020106);先进功能复合材料技术重点实验室基金(HTKJ2019KL703001)
详细信息
    通讯作者:

    刘宇峰,硕士,工程师,研究方向为新型碳纤维增强碳基、陶瓷基复合材料 E-mail:liuyufeng19890810@qq.com.

  • 中图分类号: TB332;V254

Preparation and properties of spreading carbon cloth stitched C/C composites

  • 摘要: 为获得高性能、低成本碳/碳复合材料,以商用级T700大丝束薄层化碳纤维展宽平纹布和航空航天级T300小丝束碳纤维缎纹布为原材料制备缝合预制体,采用化学气相沉积工艺方法制备了一系列缝合碳/碳复合材料,对材料的气相致密化特征、微观结构特征和力学性能进行了测试与分析。研究结果表明,碳布规格和缝合间距对材料气相致密化效果和力学性能有较大影响。当选用T700-12 K、展宽16 mm大丝束纤维编织的面密度100 g/m2的平纹布为原材料且预制体缝合间距为5 mm×5 mm时,制备的密度为1.781 g/cm3薄层化碳布缝合碳/碳复合材料表现出良好的气相沉积工艺适应性和优异的力学性能,材料拉伸强度、压缩强度、弯曲强度和层间剪切强度高达342.9 MPa、285.5 MPa、328.4 MPa和15.2 MPa。通过商用级大丝束薄层化碳纤维的应用,大幅降低了高性能碳/碳复合材料的原材料成本,且制备的碳/碳复合材料性能达到了国际先进水平。

     

  • 图  1  T700-12 K碳纤维薄层化效果[13]

    Figure  1.  Effects of spread tow of T700-12 K carbon fibers[13]

    图  2  薄层化碳布(T700-12 K-100 g)

    Figure  2.  Spreading carbon cloth (T700-12 K-100 g)

    图  4  缝合预制体

    Figure  4.  Stitched preform

    图  5  缝合碳/碳复合材料

    Figure  5.  Stitched C/C composites

    图  3  缝合示意图

    Figure  3.  Diagram of stitching

    图  6  不同规格碳/碳复合材料的化学气相沉积(CVD)时间与密度关系曲线

    Figure  6.  Curves between density and chemical vapor deposition (CVD) time of different types C/C

    图  7  缝合间距对碳/碳复合材料增密效率的影响

    Figure  7.  Stitching density’s effects on the densification of C/C composites

    图  8  不同沉积时长T300-3 K碳/碳复合材料微观结构

    Figure  8.  Microstructures of C/C composites (T300-3 K) with different CVD reaction time

    图  9  热解碳封孔效应

    Figure  9.  Sealing effect of pyrocarbon

    图  10  500 h CVD后C/C复合材料截面形貌

    Figure  10.  Microstructures of C/C composites with 500 h CVD

    图  11  缝合线周边微观结构形貌

    Figure  11.  Microstructure around stitching fiber

    图  12  碳/碳复合材料薄层化效果

    Figure  12.  Spreading effects on C/C composites

    图  13  缝合碳/碳复合材料拉伸力学性能试样

    Figure  13.  Tensile specimens of stitched C/C compositess

    图  14  典型C/C复合材料拉伸断口形貌

    Figure  14.  Tensile fracture morphologies of C/C composites

    图  15  缝合线造成的预制体缺陷

    Figure  15.  Defects caused by stitching

    图  16  典型C/C复合材料弯曲破坏形貌

    Figure  16.  Flexural fracture morphologies of C/C composites

    表  1  不同预制体结构参数

    Table  1.   Parameters of stitched preform

    No.Types of
    preform
    Types of
    fiber
    Areal density
    of carbon
    cloth/(g·m−2)
    Stitching
    density/
    mm
    1 T300-3 K-320 g-5 T300-3 K 320 5×5
    2 T300-1 K-160 g-5 T300-1 K 160 5×5
    3 T700-12 K-100 g-5 T700-12 K 100 5×5
    4 T700-12 K-100 g-10 T700-12 K 100 10×10
    5 T700-12 K-100 g-15 T700-12 K 100 15×15
    6 T700-12 K-100 g-20 T700-12 K 100 20×20
    7 T700-12 K-100 g-25 T700-12 K 100 25×25
    8 T700-12 K-100 g-40 T700-12 K 100 40×40
    9 T700-12 K-90 g-5 T700-12 K 90 5×5
    10 T700-12 K-80 g-5 T700-12 K 80 5×5
    下载: 导出CSV

    表  2  不同种碳布实测参数

    Table  2.   Parameters of different carbon cloths

    Type of fiberT300-3 KT300-1 KT700-12 K
    Fiber linear density/tex 198 66 797
    Tensile strength of fiber/GPa 4.09 3.85 5.05
    Tensile modulus of fiber/GPa 232.5 233.5 227.0
    Fracture elongation of fiber/% 1.76 1.84 2.00
    Spreading width of fiber/mm 16 18 20
    Tensile strength of spreading fiber/GPa 5.01 4.96 4.89
    Strength retention/% 99.2 98.2 96.3
    Type of carbon cloth Satin cloth Plain cloth
    Areal density of carbon cloth/(g·m−2) 320 160 100 90 80
    Thickness of carbon cloth/mm 0.31 0.17 0.11 0.091 0.075
    Tensile strength of carbon cloth(warp)/(N·50mm−1) 5 604 3241 3639 3406 2706
    Tensile strength of carbon cloth(weft)/(N·50mm−1) 5 432 3335 3580 3354 2936
    下载: 导出CSV

    表  3  不同预制体结构参数及最终碳/碳复合材料密度

    Table  3.   Parameters of stitched preform and density of C/C composites

    No.Type of
    fiber
    Areal density
    of carbon
    cloth/(g·m−2)
    Stitching
    density/
    mm
    Layer
    density/
    layer/cm
    Theoretical
    fiber volume
    fraction/vol%
    Experimental
    fiber volume
    fraction/vol%
    Density of C/C
    composites/
    (g·cm−3)
    1 T300-3 K 320 5×5 24.9 45.3 46.9 1.637
    2 T300-1 K 160 5×5 50.2 45.6 48.1 1.682
    3 T700-12 K 100 5×5 81.8 46.0 45.7 1.781
    4 T700-12 K 100 10×10 86.5 48.6 48.2 1.731
    5 T700-12 K 100 15×15 90.0 50.6 50.0 1.675
    6 T700-12 K 100 20×20 89.5 50.3 49.7 1.624
    7 T700-12 K 100 25×25 90.5 50.8 50.3 1.571
    8 T700-12 K 100 40×40 89.3 50.2 49.6 1.542
    9 T700-12 K 90 5×5 95.7 48.4 47.8 1.754
    10 T700-12 K 80 5×5 109.8 49.3 49.0 1.737
    下载: 导出CSV

    表  4  碳/碳复合材料力学性能

    Table  4.   Mechanical properties of C/C composites

    No.TensileIn-plane compressionFlexuralInterlaminar shear
    strength/MPa
    Strength/
    MPa
    Discrete
    values
    Modulus/
    GPa
    Strength/
    MPa
    Modulus/
    GPa
    Strength/
    MPa
    Modulus/
    GPa
    1 141.3 13.1% 52.8 121.2 65.0 132.3 50.5 7.2
    2 237.4 14.6% 61.4 176.2 63.8 196.3 52.9 19.7
    3 342.9 5.30% 67.6 285.5 63.8 328.4 53.8 15.2
    4 366.6 5.90% 73.9 256.8 60.1 216.4 56.9 11.7
    5 298.3 10.7% 63.9 177.2 57.4 186.9 52.5 7.9
    6 196.1 21.2% 52.3 99.1 45.9 112.1 30.8 5.0
    7 150.1 18.6% 53.1 56.8 42.9 33.1 18.1 4.5
    8 139.2 16.9% 43.6 54.8 48.7 27.9 11.2 3.5
    9 351.3 7.10% 70.9 259.1 62.6 307.7 54.1 14.7
    10 324.1 6.50% 62.8 241.6 59.1 227.0 52.9 12.9
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [2] 冯志海. 关于我国高性能碳纤维需求和发展的几点想法[J]. 新材料产业, 2010(9):19-24. doi: 10.3969/j.issn.1008-892X.2010.09.005

    FENG Zhihai. Ideas on the demand and development of high performance carbon fiber in China[J]. Advanced Materials Industry,2010(9):19-24(in Chinese). doi: 10.3969/j.issn.1008-892X.2010.09.005
    [3] 李贺军. 炭/炭复合材料[J]. 新型炭材料, 2001, 16(2):79-80. doi: 10.3321/j.issn:1007-8827.2001.02.017

    LI Hejun. Carbon/carbon composites[J]. New carbon materials,2001,16(2):79-80(in Chinese). doi: 10.3321/j.issn:1007-8827.2001.02.017
    [4] SHARMA R, RAVIKUMAR N L, DASGUPTA K, et al. Advanced carbon-carbon composites: Processing properties and applications[J]. Composite Materials,2016(4):315-367.
    [5] 徐林, 杨文彬, 陈铮, 等. 高性能二维碳/碳复合材料的制备与性能[J]. 复合材料学报, 2016, 33(12):2877-2883.

    XU Lin, YANG Wenbin, CHEN Zheng, et al. Preparation and properties of high performance two-dimensional carbon/carbon composites[J]. Acta Materiae Compositae Sinica,2016,33(12):2877-2883(in Chinese).
    [6] 嵇阿琳, 李贺军, 崔红, 等. 不同预制体结构C/C复合材料轴向热力学性能分析[J]. 无机材料学报, 2010, 25(9):994-998. doi: 10.3724/SP.J.1077.2010.00994

    JI Alin, LI Hejun, CUI Hong, et al. Axial thermodynamic performance analysis of the different preform C/C compo-sites[J]. Journal of Inorganic Materials,2010,25(9):994-998(in Chinese). doi: 10.3724/SP.J.1077.2010.00994
    [7] 刘宇峰, 俸翔, 王金明, 等. 高性能针刺碳/碳复合材料的制备与性能[J], 无机材料学报, 2020, 35(10): 1105-1111.

    LIU Yufeng, FENG Xiang, WANG Jinming, et al. Preparation and properties of high-performance needled C/C composites[J]. Journal of Inorganic Materials, 2020, 35(10): 1105-1111(in Chinese).
    [8] 罗云烽, 孙永春, 段跃新, 等. 大丝束碳纤维薄层化技术[J]. 复合材料学报, 2010, 27(1):123-128.

    LUO Yunfeng, SUN Yongchun, DUAN Yuexin, et al. A technology used in spreading large tow carbon fibers[J]. Acta Materiae Compositae Sinica,2010,27(1):123-128(in Chinese).
    [9] LIFKE J L, BUSSELLE L D, FINLEY D J, et al. Method and apparatus for spreading fiber: United States, 6049956[P]. 2000-04-18.
    [10] SIHNA S, KIMA R Y, TSAI S W, et al. Experimental studies of thin ply laminated composites[J]. Composites Science and Technology,2007,67:996-1008. doi: 10.1016/j.compscitech.2006.06.008
    [11] 杨薇薇, 于亮, 郭志强. 薄层碳纤维织物预浸料的制备与性能[J]. 纤维复合材料, 2017, 9(3):8-11. doi: 10.3969/j.issn.1003-6423.2017.03.002

    YANG Weiwei, YU Liang, GUO Zhiqiang. Preparation and properties of thin ply carbon fiber fabric prepreg[J]. Fiber Composites,2017,9(3):8-11(in Chinese). doi: 10.3969/j.issn.1003-6423.2017.03.002
    [12] 罗云烽, 孙永春, 段跃新, 等. 薄层化大丝束碳纤维复合材料性能研究[J]. 航空制造技术, 2010, 20:75-78. doi: 10.3969/j.issn.1671-833X.2010.02.014

    LUO Yunfeng, SUN Yongchun, DUAN Yuexin, et al. Study on property of spreaded large tow carbon fiber compo-sites[J]. Aeronautical Manufacturing Technology,2010,20:75-78(in Chinese). doi: 10.3969/j.issn.1671-833X.2010.02.014
    [13] 刘军, 朱星名, 胡伯仁, 等. 基于超声引导法的薄层化碳纤维性能研究[J]. 热加工工艺, 2014, 43(8):108-119.

    LIU Jun, ZHU Xingming, HU Boren, et al. Research on property of spread carbon fiber based on supersonic and traction method[J]. Hot Working Technology,2014,43(8):108-119(in Chinese).
    [14] 孙乐, 王成, 李晓飞, 等. C/C复合材料预制体的研究进展[J]. 航空材料学报, 2018, 38(2):86-95. doi: 10.11868/j.issn.1005-5053.2017.000010

    SUN L, WANG C, LI X F, et al. Research progress on preforms of C/C composites[J]. Journal of Aeronautical Materials,2018,38(2):86-95(in Chinese). doi: 10.11868/j.issn.1005-5053.2017.000010
    [15] 吴宁宁, 张中伟, 梅敏, 等. 缝合结构碳/碳复合材料层间性能测试方法研究[C]. 第六届无机材料结构、性能及测试表征技术研讨会, 2015.

    WU Ningning, ZHANG Zhongwei, MEI Min, et al. Study on interlaminar properties testing method of stitched C/C composites[C]. TEIM 2015(in Chinese).
    [16] 房金铭, 许正辉, 张中伟, 等. 碳布缝合预制体孔隙与热解碳沉积时变相依的多尺度研究[J]. 宇航材料工艺, 2015, 45(5):36-39. doi: 10.3969/j.issn.1007-2330.2015.05.007

    FANG Jinming, XU Zhenghui, ZHANG Zhongwei, et al. Multi-scale relationship of pores in carbon cloth stitched preform and deposition of pyrocarbon[J]. Aerospace Materials and Technology,2015,45(5):36-39(in Chinese). doi: 10.3969/j.issn.1007-2330.2015.05.007
    [17] 航天材料及工艺研究所. 细编穿刺碳/碳复合材料拉伸试验方法: DqES415—2005[S]. 北京: 航天材料及工艺研究所, 2005.

    Aerospace Research Institute of Materials and Processing Technology. Test method for tensile properties of fine weave pierced carbon/carbon composites: DqES415—2005[S]. Beijing: Aerospace Research Institute of Materials and Processing Technology, 2005(in Chinese).
    [18] 国防科学技术工业委员会. 连续纤维增强陶瓷基复合材料常温压缩性能试验方法: GJB 6476—2008[S]. 北京: 国防科学技术工业委员会, 2008.

    State Administration of Science Technology and Industry for National Defense. Test method for compressive properties of continuous fiber-reinforced ceramic composites at ambient temperature: GJB 6476—2008[S]. Beijing: State Administration of Science Technology and Industry for National Defense, 2008(in Chinese).
    [19] American Society for Testing and Materials International. Standard method for flexural properties of continuous fiber-reinforced advanced ceramic composites: ASTM C1341—00[S]. West Conshohocken: ASTM International, 2000.
    [20] 中华人民共和国工业和信息化部. 纤维增强塑料短梁法测定层间剪切强度: JC/T 773—2010[S]. 北京: 中国建材工业出版社, 2010.

    Ministry of Industry and Information Technology of the People’s Republic of China. Fiber-reinforced plastics composites-Determination of apparent interlaminar shear strength by short-beam method: JC/T 773—2010[S]. Beijing: China Building Materials Press, 2010(in Chinese).
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  1355
  • HTML全文浏览量:  832
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-04
  • 录用日期:  2020-07-07
  • 网络出版日期:  2020-07-13
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回