Effect of low temperature exposure on tensile mechanical properties of carbon fiber/epoxy composites
-
摘要: 针对低温暴露对碳纤维/环氧树脂(CF/EP)复合材料力学性能影响进行研究,对低温0℃、−20℃、−40℃、−60℃暴露100 h、200 h、300 h、400 h、500 h后,对CF/EP的复合材料拉伸力学性能影响展开研究,利用SEM电镜扫描分析损伤机制,根据试验结果提出了一种预测CF/EP复合材料低温暴露后剩余强度的预测公式。试验结果表明,在长时间低温暴露后,CF/EP复合材料拉伸强度随低温暴露时间的增长呈现出先增后降的趋势;低温暴露时间低于300 h时,CF/EP复合材料拉伸强度随温度下降先增后降,暴露时间高于300 h后,拉伸强度随温度下降逐渐降低;CF/EP复合材料拉伸弹性模量随低温暴露时间的增长呈现逐渐上升趋势,温度越低,上升趋势越明显。SEM结果表明,低温暴露后,纤维与环氧树脂黏结程度增强,有利于荷载传递,CF/EP复合材料拉伸强度增大,破坏形貌上表现为纤维上包裹更多树脂;长时低温暴露后,由于纤维与基体收缩系数不同导致微裂纹产生,在受到荷载时裂纹进一步扩散,不利于荷载传递,使拉伸强度下降,破坏形貌上表现为纤维成束凝集,纤维束间距增大。基于初始试验,本文提出了一种基于初始试验的CF/EP复合材料低温暴露后剩余强度预测模型,试验与预测结果吻合较好,由于考虑了同种材料在不同低温和暴露时间耦合作用下的等效作用,可减少相同材料在不同低温与暴露时间下的试验次数,因此具备一定参考价值。Abstract: According to the effects of low temperature exposure on the mechanical properties of carbon fiber/epoxy (CF/EP) composites, the tensile properties of TR50S/YPH-69 were selected after low temperature of 0℃, −20℃, −40℃, −60℃ for 100 h, 200 h, 300 h, 400 h and 500 h to investigate the effects of low temperature, then the damage mechanism of material was analyzed by SEM. Based on the test results, a prediction formula was proposed to predict the residual strength of CF/EP composites exposed at low temperature. The test results present that after experiencing long time cryopreservation, the tensile mechanical properties of CF/EP composites increase first and then decrease, with the increase of the low-temperature exposure time. When the exposure time at low temperature is less than 300 h, the tensile strength of CF/EP composites increases first and then decreases as the temperature decreases; after the exposure time exceeds 300 h, the tensile strength gradually decreases as the temperature decreases. And the tensile elastic modulus of CF/EP composites shows a gradual upward trend with the increase of low-temperature exposure time, the lower the temperature, the more obvious the upward trend. SEM analysis shows that after a short period of low temperature exposure, the fiber and epoxy resin bond stronger, which is conducive to load transfer and enhance the CF/EP composites’s tensile ability, the destruction morphology is represented by more resin wrapped on the fiber. After long-term exposure to low temperature, material may occur cracks due to different contraction coefficient. Under the applied load, the crack gets further spread, which is not conducive to the load transfer, and causes the tensile strength to decline. The failure morphology shows that the fibers agglomerate into bundles, and the fiber bundle spacing increases. Based on initial test, a formula of predicting the residual strength of CF/EP composites after low temperature exposure was proposed. The test results are in good agreement with the predicted results. The number of tests can be reduced, due to consider the equivalent effect of the same material under different low temperatures and exposure time.
-
Key words:
- carbon fiber /
- low temperature environment /
- tensile property /
- damage mechanism /
- strength prediction
-
表 1 碳纤维/环氧树脂(CF/EP)复合材料基本力学性能
Table 1. Basic mechanical properties of carbon fiber/epoxy (CF/EP) composites
Density/(g·cm−3) Tensile strength/MPa Tensile modulus/GPa Elongation at break/% TR50S 1.82 4 900 240 2 YPH-69 1.25 80 3 4 表 2 CF/EP复合材料低温暴露试验组安排
Table 2. Arrangement of CF/EP composites low temperature exposure test group
Specimen group
labelingTemperature/
℃Exposure
time/hNumber of
specimenSpecimen group
labelingTemperature/
℃Exposure
time/hNumber of
specimens− 25 − 5 − − − − O 0 a-100 5 D −40 a-100 5 b-200 5 b-200 5 c-300 5 c-300 5 d-400 5 d-400 5 e-500 5 e-500 5 B −20 a-100 5 F −60 a-100 5 b-200 5 b-200 5 c-300 5 c-300 5 d-400 5 d-400 5 e-500 5 e-500 5 表 3 CF/EP复合材料低温环境暴露等效作用时间
Table 3. Equivalent times of CF/EP composites low temperature environment exposure
0℃/273 K −20℃/253 K −40℃/233 K −60℃/213 K 0 h 0 0 0 0 100 h 91.61 84.9 78.2 71.5 200 h 183.2 169.8 156.4 143.0 300 h 274.8 254.7 234.6 214.4 400 h 366.4 339.6 312.8 285.9 500 h 458.1 424.5 391.0 357.4 表 4 不同低温条件的公式参数值数值计算结果
Table 4. Numerical calculation results of formula parameter values under different low temperature conditions
$ \eta $ $ {\lambda }_{i} $ $ \beta $ $ {\theta }_{i} $ 1 0℃/273 K 7 200 0.00197 4 600 0.00339 2 −20℃/253 K 7 200 0.00262 4 600 0.00485 3 −40℃/233 K 7 200 0.00274 4 600 0.00555 4 −60℃/213 K 7 200 0.00286 4 600 0.00645 Notes: $ \eta $—Significant parameter of low temperature strengthening effect on the material, the same material is a certain value; $ \beta $—Significant parameter of crack propagation resistance of the material, and the same material is a certain value; $ {\lambda }_{i} $ and $ {\theta }_{i} $—State parameter of the material in the low-temperature environment and the influence parameter of the low-temperature environment, which varies according to the low-temperature environment of the material; $ i $—Low temperature, $ i $=1 (0℃), 2 (−20℃), 3 (−40℃), 4 (−60℃). 表 5 不同试验条件下CF/EP复合材料拉伸强度试验值与预测值对比
Table 5. Comparison of experimental and predicted values of CF/EP composites tensile strength under different test conditions
T/℃ t/h S/MPa Si/MPa Si−S Relative tolerance/% −20 300 2 324.48 2 291.83 −32.65 −1.40 400 2 236.28 2 270.27 33.99 1.52 500 2 196.49 2 187.09 −9.40 −0.43 −40 300 2 301.16 2 272.89 −28.27 −1.23 400 2 236.17 2 236.93 0.76 0.03 500 2 138.15 2 136.39 −1.76 −0.08 −60 300 2 272.21 2 225.25 −46.96 −2.07 400 2 133.13 2 171.08 37.95 1.78 500 2 064.56 2 050.51 −14.05 −0.68 Notes: T—Temperature; t—Exposure time; S—Test values of tensile strength; Si—Predicted values of tensile strength. -
[1] SETHI S, RAY B C. Environmental effects on fibre reinforced polymeric composites: Evolving reasons and remarks on interfacial strength and stability[J]. Advances in Colloid and Interface Science,2015:43-67. [2] FENG Q P, DENG Y H, XIAO H M, et al. Enhanced cryogenic interfacial normal bond property between carbon fibers and epoxy matrix by carbon nanotubes[J]. Composites Science and Technology,2014:59-65. [3] KARA M, KIRICI M, TATAR A C. Impact behavior of carbon fiber/epoxy composite tubes reinforced with multi-walled carbon nanotubes at cryogenic environment[J]. Compo-sites Part B: Engineering,2018:145-154. [4] LIU Y, WANG M, TIAN W, et al. Ohmic heating curing of carbon fiber/carbon nanofiber synergistically strengthening cement-based composites as repair/reinforcement materials used in ultra-low temperature environment[J]. Composites Part A: Applied Science and Manufacturing,2019,125:105570. [5] CAVCAR M. The international standard atmosphere[J]. Elsevier, 2017: 641-645. [6] HU T, LI Y, LV H X, et al. Study on airworthiness problems of operating in supercooled large drops icing conditions for transport category airplanes[J]. 3rd International Symposium on Aircraft Airworthiness(ISAA 2013),2014:467-478. [7] HE Y X, LI Q, KUILA T, et al. Micro-crack behavior of carbon fiber reinforced thermoplastic modified epoxy composites for cryogenic applications[J]. Composites Part B: Engineering,2013,44(1):533-539. doi: 10.1016/j.compositesb.2012.03.014 [8] 刘康, 汪荣顺, 石玉美, 等. 纤维增强聚合物基复合材料的低温性能[J]. 低温工程, 2006(5):35-44. doi: 10.3969/j.issn.1000-6516.2006.05.007LIU Kang, WANG Rongshun, SHI Yumei, et al. Cryongenic performances of fibre reinforced polymer matrix compo-sites[J]. Cryogenics,2006(5):35-44(in Chinese). doi: 10.3969/j.issn.1000-6516.2006.05.007 [9] 刘新, 武湛君, 何辉永, 等. 超低温介质对碳纤维增强树脂基复合材料力学性能的影响[J]. 复合材料学报, 2017, 34(9):1944-1952.LIU Xin, WU Zhanjun, HE Huiyong, et al. Influence of cryogenic mediums on mechanical properties carbon fiber reinforced epoxy resin[J]. Acta Materiae Compositae Sinica,2017,34(9):1944-1952(in Chinese). [10] VICENTE S G, FRANCISCO G, DAVID C, et al. High-speed Impact performance of carbon/epoxy composites at very low temperatures[J]. 2nd International Symposium on Dynamic Response and Failure of Composite Materials, (DRAF 2016),2016:116-119. [11] SUK W H, SANG S A, LI H C, et al. Charpy impact fracture characteristics of CF/EP composite materials according to variations of fiber array direction and temperature[J]. International Journal of Precision Engineering and Manufac-turing,2013,14(2):253-258. doi: 10.1007/s12541-013-0035-9 [12] ZAOUTSOS S P, ZILIDOU M C. Influence of extreme low temperature conditions on the dynamic mechanical properties of carbon fiber reinforced polymers[J]. IOP Conference Series-Materials Science and Engineering,2017. [13] WILSON P R, CINAR A F, MOSTAFAVI M, et al. Temperature driven failure of carbon epoxy composites–A quantitative full-field study[J]. Composites Science and Technology,2018:33-40. [14] 马如飞, 周文胜, 李嘉, 等. 高空低温环境对无人机复合材料及夹芯结构性能的影响[J]. 材料导报, 2017, 31(A1):510-513.MA Rufei, ZHOU Wensheng, LI Jia, et al. Performance research of UAV composite and sandwich structure at high-altitude cryogenic condition[J]. Materials Reports,2017,31(A1):510-513(in Chinese). [15] 肖琳. 高低温循环作用后CF/EP层合板力学性能演变研究[D]. 哈尔滨: 哈尔滨工业学, 2014.XIAO Lin. Study on mechanical properties evolution of CF/EP laminates after high and low temperature cycle[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese). [16] 陈建琼, 杨万均, 彭京川, 等. 碳纤维增强尼龙复合材料低温环境适应性试验设计与分析[J]. 装备环境工程, 2017, 14(12):35-39.CHEN Jianqiong, YANG Wanjun, PENG Jingchuan, et al. Design and analysis of environmental worthiness experiments for carbon fiber reinforced nylon composites at low temperature[J]. Equipment Environmental Engineering,2017,14(12):35-39(in Chinese). [17] 殷宗莲, 杨万均, 肖敏, 等. 高低温条件下碳纤维增强尼龙复合材料的老化特征分析[J]. 装备环境工程, 2015(3):106-110.YIN Zonglian, YANG Wanjun, XIAO Min, et al. Aging characteristics analyses of carbon fiber reinforced nylon composites in high and low temperature conditions[J]. Equipment Environmental Engineering,2015(3):106-110(in Chinese). [18] KARBHARI V M, POPE G. Effect of cold region type environment on impact and flexure properties of glass/vinylester composites[J]. Journal of Cold Regions Engineering,1993,8(1):1-20. [19] KARBHARI V M, ECKEL D A. Effect of cold regionsclimate on composite jacketed concrete columns[J]. Journal of Cold Regions Engineering,1994,8(3):73-86. doi: 10.1061/(ASCE)0887-381X(1994)8:3(73) [20] DUTTA P K, DAVID H. Low-temperature and freeze-thaw durability of thick composites[J]. Composites Part B: Engineering,1996,27(3-4):371-379. doi: 10.1016/1359-8368(96)00007-8 [21] DUTTA P K. Low-temperature compressive strength of glass-fiber-reinforced polymer composites[J]. Journal of Offshore Mechanics and Arctic Engineering,1994,116(3):167-172. doi: 10.1115/1.2920146 [22] 王晓宁. 紫外、高低温老化对玻纤增强复合材料性能的影响[D]. 乌鲁木齐: 新疆大学, 2017.WANG Xiaoning. Influence of Uv aging, high and low temperature aging on glass fiber composite materials[D]. Urumqi: Xinjiang University, 2017(in Chinese). [23] 全国纤维增强塑料标准化技术委员会. 定向纤维增强塑料拉伸性能试验方法: GB/T3354—2014[S]. 北京: 中国标准出版社. 2014.National Technical Committee on Fiber Reinforced Plastic of Standardization Administration of China. Test method for tensile properties of oriented fiber reinforced plastics: GB/T3354—2014[S]. Beijing: China Standards Press, 2014(in Chinese). [24] 王贤锋. 复合材料低温力学行为的研究[D]. 合肥: 中国科学技术大学, 2001.WANG Xianfeng. Research on the low temperature mechanical behavior of composite materials[D]. Hefei: University of Science and Technology of China, 2001(in Chinese). [25] 李志伟. 环氧树脂及其复合材料的低温力学性能研究[D]. 大连: 大连理工大学, 2018.LI Zhiwei. The study on cryogenic mechanical properties of epoxy resin and its composites[D]. Dalian: Dalian University of Technology, 2018(in Chinese). [26] BULMANIS V N, URZHUMTSEV Y S, CHERSKY I N. Methods of prediction of polymer composite material performance under cold climate conditions[J]. Mechanical Behaviour of Materials V,1988:1225-1230. [27] BULMANIS V N, YARTSEV V A, KRIVONOS V V. Durability of structures of polymer composites affected by static loads and climatic factors[J]. Mechanics of Composite Materials,1987,23(5):658-663. [28] MILYUTIN G I, BULMANIS V N, GRAKOVA T S, et al. Study and prediction of the strength characteristics of a wound epoxy organic-fiber plastic under different environmental effects[J]. Mechanics of Composite Materials,1989,25(2):183-189. doi: 10.1007/BF00616262 [29] 张颖军, 朱锡, 梅志远, 等. 聚合物基复合材料老化剩余强度等效预测方法研究[J]. 材料导报, 2012(8):154-156, 164. doi: 10.3969/j.issn.1005-023X.2012.08.041ZHANG Yinjun, ZHU Xi, MEI Zhiyuan, et al. Equivalent estimating methods of ageing on polymer matrix composites residual strength[J]. Materials Reports,2012(8):154-156, 164(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.08.041 [30] 杨旭东, 安涛, 邹田春, 等. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7):84-91. doi: 10.11868/j.issn.1001-4381.2018.000307YANG Xudong, AN Tao, ZOU Tianchun, et al. Effect of hygrothermal environment on mechanical properties and damage mechanism of CF/EP[J]. Journal of Materials Engineering,2019,47(7):84-91(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000307