留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HCl浓度对水合氧化铁复合吸附剂P吸附效能的影响

赵继旭 胡建龙 邵立南 郑曦 梁存珍

赵继旭, 胡建龙, 邵立南, 等. HCl浓度对水合氧化铁复合吸附剂P吸附效能的影响[J]. 复合材料学报, 2021, 38(4): 1139-1146. doi: 10.13801/j.cnki.fhclxb.20200624.001
引用本文: 赵继旭, 胡建龙, 邵立南, 等. HCl浓度对水合氧化铁复合吸附剂P吸附效能的影响[J]. 复合材料学报, 2021, 38(4): 1139-1146. doi: 10.13801/j.cnki.fhclxb.20200624.001
ZHAO Jixu, HU Jianlong, SHAO Li’nan, et al. Effect of HCl concentration on P adsorption behavior of hydrated ferrous oxide composite adsorbents[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1139-1146. doi: 10.13801/j.cnki.fhclxb.20200624.001
Citation: ZHAO Jixu, HU Jianlong, SHAO Li’nan, et al. Effect of HCl concentration on P adsorption behavior of hydrated ferrous oxide composite adsorbents[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1139-1146. doi: 10.13801/j.cnki.fhclxb.20200624.001

HCl浓度对水合氧化铁复合吸附剂P吸附效能的影响

doi: 10.13801/j.cnki.fhclxb.20200624.001
基金项目: 北京市教委科技计划资助项目(KM202010017005);大学生创新训练项目(2020J00027)
详细信息
    通讯作者:

    胡建龙,博士,高级工程师,研究方向为工业废水深度处理与资源化   E-mail:hujianlong@bipt.edu.cn

  • 中图分类号: X703

Effect of HCl concentration on P adsorption behavior of hydrated ferrous oxide composite adsorbents

  • 摘要: 为避免传统水合氧化铁(HFO)负载树脂复合吸附剂制备过程中大量使用HCl对设备防腐、安全及环保带来的问题,优化HFO复合吸附剂的制备工艺方法,改变负载液中HCl浓度制备得到多种HFO复合吸附剂,考察制备得到的HFO复合吸附剂对P的吸附动力学、吸附等温线、初始pH、共存离子影响、解吸再生方法等,评价负载液中HCl浓度对吸附剂吸附效能的影响。结果表明,负载液中HCl浓度由2 mol·L−1降低至0.5 mol·L−1,并不会显著降低HFO复合吸附剂的P吸附容量。HCl浓度为0.5 mol·L−1时制备得到的HFO复合吸附剂对P的最大吸附容量为29.67 mg·g−1,显著高于D201树脂载体(16.39 mg·g−1),其吸附动力学曲线更符合准一级吸附动力学模型,最佳的P吸附pH为6~8,在共存离子Cl、NO3、SO42−、CO32−浓度为1.0 g·L−1的条件下,吸附剂对P的吸附容量降低31.1%~53.0%。采用5wt%的NaOH溶液能有效实现吸附剂中P的解吸再生。

     

  • 图  1  D201树脂基体与HFO复合吸附剂的SEM图像与EDS图谱

    Figure  1.  SEM images and EDS spectra of D201 resin and HFO composite adsorbents

    图  2  D201树脂与HFO复合吸附剂吸附动力学曲线

    Figure  2.  Adsorption kinetic curves of D201 resin and HFO composite adsorbents

    图  3  D201树脂与HFO复合吸附剂的吸附等温曲线

    Figure  3.  Adsorption isotherms of D201 resin and HFO composite adsorbents

    图  4  pH对D201树脂与HFO复合吸附剂吸附容量的影响

    Figure  4.  Effect of pH on phosphate adsorption amount of D201 resin and HFO composite adsorbents

    图  5  共存离子对D201树脂与HFO复合吸附剂吸附容量的影响

    Figure  5.  Effect of co-existing ions on phosphate adsorption amount of D201 resin and HFO composite adsorbents

    图  6  D201树脂与HFO复合吸附剂的解吸再生率

    Figure  6.  Phosphate regeneration efficiencies of D201 resin and HFO composite adsorbents

    表  1  不同HCl浓度制备的水合氧化铁(HFO)复合吸附剂

    Table  1.   Hydrated ferrous oxide (HFO) composite adsorbents prepared with different HCl concentrations

    HCl concentration/(mol·L−1)Adsorbent
    0 D201-0 mol·L−1 HCl
    0.5 D201-0.5 mol·L−1 HCl
    1.0 D201-1 mol·L−1 HCl
    2.0 D201-2 mol·L−1 HCl
    下载: 导出CSV

    表  2  D201树脂与HFO复合吸附剂的P吸附动力学拟合结果

    Table  2.   Kinetic fitting results of P adsorption by D201 resin and HFO composite adsorbents

    AdsorbentPseudo-first-orderPseudo-second-orderIntra-particle diffusion
    k1/min−1qe/(mg·g−1)R2k2/min−1qe/(mg·g−1)R2Ckdif/(mg·g−1·min−1/2)R2
    D201 0.106 9.872 0.997 0.018 10.878 0.967 3.765 0.785 0.634
    D201-0 mol·L−1 HCl 0.110 11.610 0.990 0.011 12.964 0.964 3.588 1.007 0.713
    D201-0.5 mol·L−1 HCl 0.144 13.497 0.995 0.015 14.773 0.985 5.431 1.052 0.664
    D201-1 mol·L−1 HCl 0.155 10.266 0.995 0.022 11.180 0.959 4.363 0.784 0.679
    D201-2 mol·L−1 HCl 0.152 10.532 0.954 0.013 11.714 0.992 3.392 0.897 0.726
    Notes: k1—Pseudo-first-order kinetic constant; k2—Pseudo-second-order kinetic constant; qe—Phosphate adsorption capacity in equilibrium; kdif—Intra-particle diffusion rate constant; C—Reaction constant.
    下载: 导出CSV

    表  3  D201树脂与HFO复合吸附剂的等温吸附模型拟合参数

    Table  3.   Isothermal adsorption model fitting parameters of D201 resin and HFO composite adsorbents

    AdsorbentLangmuir modelFreundlich model
    qm/(mg·g-1)b/(L·mg-1)R2nK/(mg 1-1/n·L1/n·g-1)R2
    D20116.390.0750.8513.0662.8550.971
    D201-0 mol·L-1HCl26.670.3160.9143.3298.3210.981
    D201-0.5 mol·L-1HCl29.670.2350.9313.3018.2630.951
    D201-1 mol·L-1HCl29.850.1920.9273.1417.8760.970
    D201-2 mol·L-1HCl28.570.2210.9213.0147.7040.971
    Notes: qm—Maximum adsorption capacity; b, K and n—Isotherm constants.
    下载: 导出CSV
  • [1] 项学敏, 刘颖, 周集体, 等. 水合氧化铁对废水中磷酸根的吸附-解吸性能研究[J]. 环境科学, 2008, 29(11):69-73.

    XIANG Xuemin, LIU Ying, ZHOU Jiti, et al. Sorption-desorption of phosphate in wastewater by hydrous iron oxide[J]. Environmental Science,2008,29(11):69-73(in Chinese).
    [2] 葛磊, 王静, 陈欢, 等. 活性炭负载水合氧化铁对草甘膦吸附性能的研究[J]. 环境工程学报, 2009, 3(10):1745-1748.

    GE Lei, WANG Jing, CHEN Huan, et al. Adsorption of glyphosate from aqueous solution by hydrous ferric oxide preloaded into active carbon[J]. Chinese Journal of Environmental Engineering,2009,3(10):1745-1748(in Chinese).
    [3] 莫德清, 段钧元, 王曦兢. 水合氧化铁对含磷废水的吸附特性研究[J]. 环境科学与技术, 2012, 35(12J):66-69.

    MO Deqing, DUAN Junyuan, WANG Xijing. Study on phosphate contained wastewater adsorption by hydrous iron oxide[J]. Environmental Science & Technology,2012,35(12J):66-69(in Chinese).
    [4] DEY S, GOSWAMI S, GHOSH U C. Hydrous ferric oxide (HFO) a scavenger for fluoride from contaminated water[J]. Water Air& Soil Pollution,2004,158(1):311-323.
    [5] LI Y, LI Z, XU F, et al. Superconducting magnetic separation of phosphate using freshly formed hydrous ferric oxide sols[J]. Environmental Technology,2017,38(1-4):377-384.
    [6] 张庆建, 张炜铭, 潘丙才, 等. 载铁复合环境材料的制备及对水体中砷的深度净化[J]. 离子交换与吸附, 2009, 25(3):282-288.

    ZHANG Qingjian, ZHANG Weiming, PAN Bingcai, et al. Preparation of iron-loaded hybrid materials for trace arsenic removal from waters[J]. Ion Exchange and Adsorption,2009,25(3):282-288(in Chinese).
    [7] GUPTA V K, SAINI V K, JAIN N. Adsorption of As(III) from aqueous solutions by iron oxide-coated sand[J]. Journal of Colloid & Interface Science,2005,288(1):55-60.
    [8] BOUJELBEN N, BOUZID J, ELOUEAR Z. Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: Study in single and binary systems[J]. Journal of Hazardous Materials,2009,163(1):376-382. doi: 10.1016/j.jhazmat.2008.06.128
    [9] JEON C S, BAEK K, PARK J K, et al. Adsorption characteristics of As(v) on Iron-coated zeolite[J]. Journal of Hazardous Materials,2009,163(2-3):804-808.
    [10] KUNDU S, GUPTA A K. Arsenic adsorption onto iron oxide-coated cement (IOCC): Regression analysis of equilibrium data with several isotherm models and their optimization[J]. Chemical Engineering Journal,2006,122(1-2):93-106.
    [11] CUMBAL L, SENGUPTA A K. Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: Role of Donnan membrane effect[J]. Environmental Science& Technology,2005,39(17):6508-6515.
    [12] ZHAO X, LV L, PAN B, et al. Polymer-supported nanocomposites for environmental application: A review[J]. Chemical Engineering Journal,2011,170(2-3):381-394.
    [13] PAN B, WU J, PAN B, et al. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents[J]. Water Research,2009,43(17):4421-4429.
    [14] SENDROWSKI A, BOYER T H. Phosphate removal from urine using hybrid anion exchange resin[J]. Desalination,2013,322(4):104-112.
    [15] LI H, SHAN C, ZHANG Y, et al. Arsenate adsorption by hydrous ferric oxide nanoparticles embedded in cross-linked anion exchanger: Effect of the host pore structure[J]. Acs Applied Materials & Interfaces,2016,8(5):3012-3020.
    [16] HUA M, YANG B, SHAN C, et al. Simultaneous removal of As(V) and Cr(VI) from water by macroporous anion exchanger supported nanoscale hydrous ferric oxide composite[J]. Chemosphere,2017,171(3):126-133.
    [17] 中国石油和化学工业联合会. 离子交换树脂预处理方法: GB/T 5476—2013[S]. 北京: 中国标准出版社, 2013.

    China Petroleum and Chemical Industry Federation. Methods for pretreating ion exchange resins: GB/T 5476—2013[S]. Beijing: Standards Press of China, 2013(in Chinese).
    [18] DEMARCO M J, SENGUPTA A K, GREENLEAF J E. Arsenic removal using a polymeric/inorganic hybrid sorbent[J]. Water Research,2003,37(1):164-176.
    [19] 国家环境保护局标准处. 水质总磷的测定. 钼酸铵分光光度法: GB/T 11893—1989[S]. 北京: 中国标准出版社, 1989.

    Standards Division, Ministry of Environmental Protection of the People’s Republic of China. Water quality-Determination of total phosphorus-Ammonium molybdate spectrophotrometric method: GB/T 11893—1989[S]. Beijing: Standards Press of China, 1989 (in Chinese).
    [20] 唐振平, 毕玉玺, 刘迎九, 等. 氧化石墨烯/有机改性膨润土复合材料的制备及其对Cd(Ⅱ)的吸附[J]. 复合材料学报, 2018, 35(11):284-292.

    TANG Zhenping, BI Yuxi, LIU Yingjiu, et al. Preparation of graphene oxide/organo-modified bentonite composites and their adsorption on Cd(II)[J]. Acta Materiae Compositae Sinica,2018,35(11):284-292(in Chinese).
    [21] 谢发之, 李振宇, 李海斌, 等. 水合氧化铁负载D418树脂对磷的吸附性能研究[J]. 环境污染与防治, 2019, 41(2):175-179.

    XIE Fazhi, LI Zhenyu, LI Haibin, et al. Phosphorus adsorption capacity of D418 resin loaded with hydrated ferric oxide[J]. Environmental Pollution & Control,2019,41(2):175-179(in Chinese).
    [22] 郑晓英, 李楠, 邱丽佳, 等. 羟基铁对污水厂二级处理出水中低浓度磷的深度处理性能[J]. 净水技术, 2019, 28(3):70-75.

    ZHENG Xiaoying, LI Nan, QIU Lijia, et al. Advanced phosphorus removal from low phosphorus concentration water by iron hydroxyl[J]. Water Purification Technology,2019,28(3):70-75(in Chinese).
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  893
  • HTML全文浏览量:  370
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-21
  • 录用日期:  2020-06-20
  • 网络出版日期:  2020-06-28
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回