留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料负泊松比格栅结构设计及力学性能评价

于雅琳 李健芳 黄智彬 莫申忠 王乐辰 黄玉清

于雅琳, 李健芳, 黄智彬, 等. 复合材料负泊松比格栅结构设计及力学性能评价[J]. 复合材料学报, 2021, 38(4): 1107-1114. doi: 10.13801/j.cnki.fhclxb.20200623.002
引用本文: 于雅琳, 李健芳, 黄智彬, 等. 复合材料负泊松比格栅结构设计及力学性能评价[J]. 复合材料学报, 2021, 38(4): 1107-1114. doi: 10.13801/j.cnki.fhclxb.20200623.002
YU Yalin, LI Jianfang, HUANG Zhibin, et al. Structural design and mechanical characterization of an auxetic advanced grid structure composite[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1107-1114. doi: 10.13801/j.cnki.fhclxb.20200623.002
Citation: YU Yalin, LI Jianfang, HUANG Zhibin, et al. Structural design and mechanical characterization of an auxetic advanced grid structure composite[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1107-1114. doi: 10.13801/j.cnki.fhclxb.20200623.002

复合材料负泊松比格栅结构设计及力学性能评价

doi: 10.13801/j.cnki.fhclxb.20200623.002
基金项目: 火箭军装备预先研究项目(900703800205010115911901);航天材料及工艺研究所技术创新基金(900703800803000115911801)
详细信息
    通讯作者:

    于雅琳,博士,工程师,研究方向为复合材料结构设计及成型工艺  E-mail:yuyalin1989@126.com

  • 中图分类号: TB332;V414.8

Structural design and mechanical characterization of an auxetic advanced grid structure composite

  • 摘要: 对复合材料负泊松比格栅新结构的设计、制备与评价进行了研究,采用有限元方法模拟了负泊松比结构单元在轴压载荷作用下的力学行为,通过热压罐成型制备复合材料负泊松比格栅结构,并评估其成型质量、蒙皮及筋条的力学性能、结构抗轴压性能。数值模拟结果表明,负泊松比格栅结构与正交格栅结构相比,变形形式从马鞍形变为波纹形,横向膨胀量降低,应力分布均匀性提升,筋条-轴线夹角θ=30°时,负泊松比格栅结构达到最优。采用热压罐成型的MT300/603碳纤维/环氧树脂负泊松比格栅试件成型质量良好,蒙皮及筋条的力学性能优异。力学测试结果表明,筋条-轴线夹角θ=30°时,MT300/603负泊松比格栅结构轴压模量为65.92 GPa,轴压失效载荷为64.65 kN。轴压失效模式为筋条节点处的蒙皮-筋条开裂。筋条-轴线夹角θ=30°的MT300/603负泊松比格栅结构抗压强度高于正交格栅结构,且力学行为呈现明显的负泊松比特征,是一种具备优异综合力学性能的新格栅结构,在航天飞行器蒙皮结构等领域具有潜在的应用价值。

     

  • 图  1  内凹六边形周期格栅结构示意图

    Figure  1.  Sketches of a re-entrant chiral auxetic structure

    l, h—Grid size; t—Grid thickness; θ—Angle between grid and axis

    图  2  周期格栅数值模型

    Figure  2.  Numerical models of periodic advance grid structure (AGS) composites ((a)Orthogonal AGS; (b) Auxetic AGS, θ=0°; (c) Auxetic AGS, θ=30°; (d) Auxetic AGS, θ=40°; (e) Auxetic AGS, θ=60°)

    图  3  周期格栅约束方式及位移云图

    Figure  3.  Constraints and displacement contour plots of periodic AGS composites ((a)Orthogonal AGS; (b) Auxetic AGS, θ=0°; (c) Auxetic AGS, θ=30°; (d) Auxetic AGS, θ=40°; (e) Auxetic AGS, θ=60°)

    图  4  周期格栅米塞斯应力云图

    Figure  4.  Mises stress contour plots of periodic AGS composites ((a) Orthogonal AGS; (b) Auxetic AGS, θ=0°; (c) Auxetic AGS, θ=30°; (d) Auxetic AGS, θ=40°; (e) Auxetic AGS, θ=60°)

    图  5  周期格栅最大应力及抗压模量曲线

    Figure  5.  Maximum Mises stress and compressive modulus curves of periodic AGS composites

    图  6  复合材料负泊松比格栅结构试件(θ=30°)及无损检测C扫图像

    Figure  6.  Product and C-scan image of the auxetic AGS composite (θ=30°)

    图  7  复合材料负泊松比格栅结构压缩载荷下位移曲线

    Figure  7.  Displacement curve of auxetic AGS composites under compressive loading

    图  8  复合材料负泊松比格栅结构蒙皮中心压缩载荷与横向应变关系曲线

    Figure  8.  Correlative curves between compressive loading and transverse strain in the center of auxetic AGS composites

    表  1  内凹六边形几何参数

    Table  1.   Geometrical parameters of re-entrant chiral auxetic structures

    No.l/mmh/mmθ/(°)Structure
    1 67.5 70.0 0 Orthogonal grid
    2 67.5 70.0 0 Re-entrant grid
    3 77.6 70.0 30 Re-entrant grid
    4 82.2 70.0 40 Re-entrant grid
    5 97.8 70.0 60 Re-entrant grid
    下载: 导出CSV

    表  2  MT300/603复合材料单向板力学性能

    Table  2.   Mechanical properties of MT300/603 unidirectional composite laminates

    Mechanical parameterAverage value
    0° tensile modulus/GPa 148
    Poisson’s ratio ν12 0.31
    90° tensile modulus/GPa 10.5
    Poisson’s ratio ν21 0.02
    0° compressive modulus/GPa 143
    90° compressive modulus/GPa 11.2
    In-plane shear modulus/GPa 5.6
    下载: 导出CSV

    表  3  复合材料负泊松比格栅结构力学性能

    Table  3.   Mechanical properties of the auxetic AGS composites

    No.Vf /%σc of skinEc of skinτ of skinσc of gridEc of gridτ of skin-grid
    X/MPaCV/%X/GPaCV/%X/MPaCV/%X/MPaCV/%X/GPaCV/%X/MPaCV/%
    1 60.5 799 1 61.8 2.2 62.6 5.2 698 7.9 119 6 75.8 12
    2 59.5 860 7.2 60.8 3.3 65.2 3.8 648 9.1 121 4.1 83.5 15
    3 63.4 800 5.5 60.4 5 67.9 7 650 12 122 4.5 75.1 8.9
    Notes:Vf—Fiber volume fraction; σc—Compressive strength; Ec—Compressive modulus; τ—Interlaminar strength; X—Average value; CV—Coefficient of variation.
    下载: 导出CSV
  • [1] 杜善义, 章继峰, 张博明. 先进复合材料格栅结构(AGS)应用与研究进展[J]. 航空学报, 2007, 28(2):419-424. doi: 10.3321/j.issn:1000-6893.2007.02.033

    DU Shanyi, ZHANG Jifeng, ZHANG Boming. Overview of application and research on advanced composite grid structures[J]. Acta Aeronautica et Astronautica Sinica,2007,28(2):419-424(in Chinese). doi: 10.3321/j.issn:1000-6893.2007.02.033
    [2] TOTARO G, GÜRDAL Z. Optimal design of composite lattice shell structures for aerospace applications[J]. Aerospace Science & Technology,2009,13(4-5):157-164.
    [3] 王世勋, 石玉红, 张希, 等. 复合材料格栅结构研究进展与应用[J]. 宇航材料工艺, 2017, 47(1):5-12. doi: 10.12044/j.issn.1007-2330.2017.01.002

    WANG Shixun, SHI Yuhong, ZHANG Xi, et al. Application and research progress of composite lattice grids structure[J]. Aerospace Materials & Technology,2017,47(1):5-12(in Chinese). doi: 10.12044/j.issn.1007-2330.2017.01.002
    [4] PETER M, WEGNER, JOHN E, et al. Application of advanced grid-stiffened structures technology to the Minotaur payload fairing[J]. AIAA,2002,1336:1-7.
    [5] QUAN C, HAN B, HOU Z, et al. 3D printed continuous fiber reinforced composite auxetic honeycomb structures[J]. Composites Part B: Engineering,2020,187:107858. doi: 10.1016/j.compositesb.2020.107858
    [6] FANTUZZI, N, TROVALUSCI, P, LUCIANO R. Material symmetries in homogenized hexagonal-shaped composites as cosserat continua[J]. Symmetry,2020,12(3):21. doi: 10.3390/sym12030441
    [7] NOVAK N, KRSTULOVI-OPARA L, REN Z, et al. Mechanical properties of hybrid metamaterial with auxetic chiral cellular structure and silicon filler[J]. Composite Structures,2020,234:111718. doi: 10.1016/j.compstruct.2019.111718
    [8] 张伟, 侯文彬, 胡平. 新型负泊松比多孔吸能盒平台区力学性能[J]. 复合材料学报, 2015, 32(2):534-541.

    ZHANG Wei, HOU Wenbin, HU Ping, et al. Mechanical properties of new negative Poisson’s ratio crush box with cellular structure in plateau stage[J]. Acta Materiae Compositae Sinica,2015,32(2):534-541(in Chinese).
    [9] 邸馗, 茅献彪. 对边简支负泊松比蜂窝夹层板的弯曲自由振动[J]. 复合材料学报, 2016, 33(4):910-920.

    DI Kui, MAO Xianbiao. Free flexural vibration of honeycomb sandwich plate with negative Poisson's ratio simply supported on opposite edges[J]. Acta Materiae Compositae Sinica,2016,33(4):910-920(in Chinese).
    [10] 龙凯, 谷先广, 韩丹. 考虑泊松效应的材料/结构一体化设计方法[J]. 复合材料学报, 2017, 34(6):1252-1260.

    LONG Kai, GU Xianguang, HAN Dan. A concurrent design method for microstructures of materials and macrostructures by considering the Poisson effect[J]. Acta Materiae Compositae Sinica,2017,34(6):1252-1260(in Chinese).
    [11] 秦浩星, 杨德庆. 任意负泊松比超材料结构设计的功能基元拓扑优化法[J]. 复合材料学报, 2018, 35(4):1014-1023.

    QIN Haoxing, YANG Deqing. Functional element topology optimal method of metamaterial design with arbitrary negative Poisson's ratio[J]. Acta Materiae Compositae Sinica,2018,35(4):1014-1023(in Chinese).
    [12] 吕亦乐. 负泊松比超材料的减振性能研究[D]. 成都: 电子科技大学, 2019.

    LU Yile. Study on damping performance of negative Poisson’s ratio metamaterials[D]. Chengdu: University of Electronic Science and Technology of China, 2019(in Chinese).
    [13] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3):656-689. doi: 10.6052/0459-1879-18-381

    REN Xin, ZHANG Xiangyu, XIE Yimin. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics,2019,51(3):656-689(in Chinese). doi: 10.6052/0459-1879-18-381
    [14] 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13):1-14. doi: 10.3901/JME.2018.13.001

    YU Jingjun, XIE Yan, PEI Xu. State-of-art of Metamaterials with negative Poisson's ratio[J]. Journal of Mechanical Engineering,2018,54(13):1-14(in Chinese). doi: 10.3901/JME.2018.13.001
    [15] 王信涛. 三维有序负泊松比结构的设计、制备与力学性能表征[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    WANG Xintao. The design, fabrication and mechanical characterization of three-dimensional periodic auxetic cellular structures[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
    [16] 杨志春, 邓庆田. 负泊松比材料与结构的力学性能研究与应用[J]. 力学进展, 2011, 41(3):335-350.

    YANG Zhichun, DENG Qingtian. Mechanical property and application of materials and structures with negative poisson's ratio[J]. Advances in Mechanics,2011,41(3):335-350(in Chinese).
    [17] 黄智, 王万录, 廖克俊, 等. 具有负泊松比材料的研究进展[J]. 材料导报, 2002, 16(10):49-51.

    HUANG Zhi, WANG Wanlu, LIAO Kejun, et al. Advances in research on with negative Poisson’s ratio materials[J]. Materials Review,2002,16(10):49-51(in Chinese).
    [18] 蒋欣程. 双箭头蜂窝夹层式军车装甲的防弹分析与优化[D]. 大连: 大连理工大学, 2016.

    JIANG Xincheng. Analysis and optimization of the ballistic resistance performance of the double arrowhead sandwich military vehicle armor[D]. Dalian: Dalian University of Technology, 2016(in Chinese).
    [19] LU Zixing, LI Xiang, YANG Zhenyu, et al. Novel structure with negative Poisson's ratio and enhanced Young's modulus[J]. Composite Structures,2016,138:243-252.
    [20] LI Yang, OLA Harrysson, HARVEY West. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing[J]. International Journal of Solids & Structures, 2015, 69-70: 475-490.
    [21] YU X, ZHOU J, LIANG H, et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review[J]. Progress in Materials Science,2018,94:114-173.
    [22] CHAO M, HONGSHUAI L, JUN L, et al. Macroscopic mechanical response of chiral-type cylindrical metastructures under axial compression loading[J]. Materials & Design,2018,158:198-212.
    [23] SPADONI A, RUZZENE M. Elasto-static micropolar behavior of a chiral auxetic lattice[J]. Journal of the Mechanics & Physics of Solids,2012,60(1):156-171.
    [24] PRAWOTO Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio[J]. Computational Materials Science,2012,58:140-153.
    [25] GRIMA J N, ATTARD D, ELLUL B, et al. An improved analytical model for the elastic constants of auxetic and conventional hexagonal honeycombs[J]. Cellular Polymers,2011,30(6):287-310. doi: 10.1177/026248931103000602
    [26] BEZAZI A F S, REMILLAT C. A novel centersymmetric honeycomb composite structure[J]. Composite Structures,2005,71:536-564.
    [27] 国防科学技术工业委员会. 纤维增强复合材料无损检测方法: 第一部分超声波检验: GB/T 1038.1A—2004[S]. 北京: 中国标准出版社, 2004.

    Commission of Science, Technology and Industry for National Defence. Non-destructive inspecting methods for fiber reinforced plastics: Part 1: Ultrasonic inspecting: GB/T 1038.1A—2004[S], Beijing: China Standards Press, 2004(in Chinese).
    [28] 中国国家标准化管理委员会. 碳纤维增强塑料孔隙含量和纤维体积含量试验方法: GB/T 3365—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Carbon fiber reinforced plastics-Determination of void content and fiber volume content: GB/T 3365—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1583
  • HTML全文浏览量:  592
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 录用日期:  2020-06-16
  • 网络出版日期:  2020-06-24
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回