Friction and wear properties of MoO3-oxide carbon nanotubes modified glass fiber/epoxy composites
-
摘要: 为改善玻璃纤维/环氧树脂(GF/EP)复合材料的耐摩擦磨损性能,采用真空抽滤法制备柔性MoO3纳米带-氧化碳纳米管膜(m-MoO3-OCNTs),并结合真空辅助树脂转移模塑(VARTM)工艺制备m-MoO3-OCNTs改性GF/EP (m-MoO3-OCNTs-(GF/EP))复合材料。结果表明,m-MoO3-OCNTs显著提高了GF/EP复合材料的导热系数和自润滑性能,在干摩擦测试条件下,可在m-MoO3-OCNTs-(GF/EP)复合材料与对偶面之间形成有效传递摩擦热的高质量连续转移膜;与GF/EP复合材料相比,m-MoO3-OCNTs-(GF/EP)复合材料的耐摩擦磨损磨性能提高了约4倍。Abstract: In order to improve the anti-friction and anti-wear properties of glass fiber/epoxy (GF/EP) composites, flexible MoO3 nanobelt-oxide carbon nanotubes film (m-MoO3-OCNTs) was prepared by the modified vacuum filtration technique, and m-MoO3-OCNTs modified GF/EP (m-MoO3-OCNTs-(GF/EP)) composites were prepared by vacuum assisted resin transfer molding (VARTM) process. The results show that m-MoO3-OCNTs can significantly improve the thermal conductivity and self-lubricating properties of the GF/EP composite. Under the dry friction test conditions, a high-quality continuous transfer film can be formed between the m-MoO3-OCNTs-(GF/EP) composites and the dual surface, which can effectively transfer the friction heat. Compared with the pure GF/EP composite, the friction and wear resistance of m-MoO3-OCNTs-(GF/EP) composite is improved by about 4 times.
-
Key words:
- oxidized carbon nanotubes /
- MoO3 /
- glass fiber /
- epoxy /
- friction and wear
-
图 1 真空树脂转移模塑(VARTM)工艺示意图(a)及柔性MoO3纳米带-氧化碳纳米管膜改性玻璃纤维/环氧树脂(m-MoO3-OCNTs-(GF/EP))复合材料照片(b)
Figure 1. Schematic of experimental setup for vacuum assisted resin transfer molding (VARTM) technique (a) and photograph of flexible MoO3 nanobelt-oxide carbon nanotubes film modified glass fiber/epoxy (m-MoO3-OCNTs-(GF/EP)) composite (b)
表 1 不同测试条件下GF/EP、MoO3-OCNTs-GF/EP和m-MoO3-OCNTs-(GF/EP)复合材料的磨损率和摩擦系数
Table 1. Wear rates and frictional coefficients of GF/EP, MoO3-OCNTs-GF/EP and m-MoO3-OCNTs-(GF/EP) composites tested under different conditions
Sample Wear rate/(10−5 mm3·Nm−1) Coefficient of friction 2 N 4 N 8 N 40 mm·s−1 80 mm·s−1 120 mm·s−1 2 N 4 N 8 N 40 mm·s−1 80 mm·s−1 120 mm·s−1 GF/EP 3.7 7.3 27.5 7.5 13.3 26.3 0.58 0.56 0.53 0.59 0.53 0.47 MoO3-CNTs-GF/EP 2.4 5.8 25.5 7.4 11.2 25.0 0.56 0.53 0.46 0.54 0.48 0.42 m-MoO3-CNTs-(GF/EP) 1.2 2.4 23.1 5.6 10.0 22.5 0.47 0.40 0.32 0.36 0.31 0.26 Notes: When the normal force changes, the sliding velocity is 120 mm/s; when the sliding velocity changes, the normal force is 8 N. 表 2 GF/EP、MoO3-OCNTs-GF/EP和m-MoO3-OCNTs-(GF/EP)复合材料的力学性能、硬度及导热系数
Table 2. Mechanical properties, hardness and thermal conductivities of GF/EP, MoO3-OCNTs-GF/EP and m-MoO3-OCNTs-(GF/EP) composites
Sample Tensile strength/MPa Young’s modulus/GPa Hardness/Shore D Thermal conductivity/(W(m·K)−1) GF/EP 550.6±7.6 27.5±1.1 85.2±1.6 0.19 MoO3-OCNTs-GF/EP 574.2±6.8 29.3±0.6 85.3±1.1 1.46 m-MoO3-OCNTs-(GF/EP) 615.8±5.7 32.7±0.9 89.2±1.8 3.98 -
[1] 邓富泉, 张丽, 刘少祯, 等. 单向连续碳纤维-玻璃纤维层间混杂增强环氧树脂基复合材料的力学性能[J]. 复合材料学报, 2018, 35(7):1857-1863.DENG Fuquan, ZHANG Li, LIU Shaozhen, et al. Mechanical properties of unidirectional carbon fiber-glass fiber hybrid reinforced epoxy composites in interlaminar layer[J]. Acta Materiae Compositae Sinica,2018,35(7):1857-1863(in Chinese). [2] AHMEDIZAT S R, AL-ZUBAIDI A B, AL-TABBAKH A A. et al. Comparative study of erosion wear of glass fiber/epoxy composite reinforced with Al2O3 nano and micro particles[J]. Materials Today: Proceedings,2020,20:420-427. doi: 10.1016/j.matpr.2019.09.158 [3] 赫玉欣, 杨松, 张丽, 等. 碳纳米管有序排列对碳纤维增强环氧树脂基复合材料低温性能的影响[J]. 复合材料学报, 2017, 34(8):1693-1703.HE Yuxin, YANG Song, ZHANG Li, et al. Effects of aligned carbon nanotubes in matrix on mechanical properties of carbon fiber reinforced epoxy composites at cryogenic temperature[J]. Acta Materiae Compositae Sinica,2017,34(8):1693-1703(in Chinese). [4] MI X Q, ZHONG L Y, WEI F, et al. Fabrication of halloysite nanotubes/reduced graphene oxide hybrids for epoxy composites with improved thermal and mechanical properties[J]. Polymer Testing,2019,76:473-480. doi: 10.1016/j.polymertesting.2019.04.007 [5] UPADHYAY R K, KUMAR A. Effect of particle weight concentration on the lubrication properties of graphene based epoxy composites[J]. Colloid and Interface Science Communications,2019,33:100206. doi: 10.1016/j.colcom.2019.100206 [6] YOO S E, SEO M K, KIM B S, et al. Effect of MoO3 on mechanical interfacial behavior and anti-oxidation of carbon fibers-reinforced composites[J]. Journal of Industrial and Engineering Chemistry,2015,30:29-32. doi: 10.1016/j.jiec.2015.04.025 [7] SAYYED M I, ABDALSALAM A H, TAKI M M, et al. MoO3 reinforced ultra high molecular weight PE for neutrons shielding applications[J]. Radiation Physics and Chemistry,2020,172:108852. doi: 10.1016/j.radphyschem.2020.108852 [8] UPADHYAY R K, KUMAR A. Epoxy-graphene-MoS2 composites with improved tribological behavior under dry sliding contact[J]. Tribology International,2019,130:106-118. [9] CHANDOUL F, BOUKHACHEM A, HOSNI F, et al. Change of the properties of nanostructured MoO3 thin films using gamma-ray irradiation[J]. Ceramics International,2018,44(11):12483-12490. doi: 10.1016/j.ceramint.2018.04.040 [10] ARAVINDA L S, BHAT U, BHAT B R. Binder free MoO3/multiwalled carbon nanotube thin film electrode for high energy density supercapacitors[J]. Electrochimica Acta,2013,112:663-669. doi: 10.1016/j.electacta.2013.08.114 [11] LEI G, WANG Z, XIONG J, et al. The enhanced hydrogen-sensing performance of the Fe-doped MoO3 monolayer: A DFT study[J]. International Journal of Hydrogen Energy,2020,45(16):10257-10267. doi: 10.1016/j.ijhydene.2020.01.238 [12] GUAN D S, LI J Y, GAO X F, et al. Controllable synthesis of MoO3-deposited TiO2 nanotubes with enhanced lithium-ion intercalation performance[J]. Journal of Power Sources,2014,245:305-312. [13] HE Y X, YANG S, LIU H, et al. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties[J]. Journal of Colloid and Interface Science,2018,517:40-51. doi: 10.1016/j.jcis.2018.01.087 [14] HE Y X, CHEN Q Y, YANG S, et al. Micro-crack behavior of carbon fiber reinforced Fe3O4/graphene oxide modified epoxy composites for cryogenic application[J]. Composites Part A: Applied Science and Manufacturing,2018,108:12-22. doi: 10.1016/j.compositesa.2018.02.014 [15] BAI S L, CHEN C, LUO R X, et al. Synthesis of MoO3/reduced graphene oxide hybrids and mechanism of enhancing H2S sensing performances[J]. Sensors and Actuators B: Chemical,2015,216:113-120. doi: 10.1016/j.snb.2015.04.036 [16] ZENG W, ZHANG G H, HOU S C, et al. Facile synthesis of graphene@NiO/MoO3 composite nanosheet arrays for high-performance supercapacitors[J]. Electrochimica Acta,2015,151:510-516. doi: 10.1016/j.electacta.2014.11.088 [17] LIU C L, WANG Y, ZHANG C, et al. In situ synthesis of α-MoO3/graphene composites as anode materials for lithium ion battery[J]. Materals Chemistry and Physics,2014,143(3):1111-1118. doi: 10.1016/j.matchemphys.2013.11.011 [18] HE Y X, CHEN Q Y, LIU H, et al. Friction and wear of MoO3/graphene oxide modified glass fiber reinforced epoxy nanocomposites[J]. Macromolecular Material and Engineering,2019,304:1900166. doi: 10.1002/mame.201900166 [19] HAO Y, ZHOU X Y, SHAO J J, et al. The influence of multiple fillers on friction and wear behavior of epoxy composite coatings[J]. Surface and Coatings Technology,2019,362:213-219. doi: 10.1016/j.surfcoat.2019.01.110 [20] UPADHYAY R K, KUMAR A. Effect of humidity on the synergy of friction and wear properties in ternary epoxy-graphene-MoS2 composites[J]. Carbon,2019,146:717-727. doi: 10.1016/j.carbon.2019.02.015 [21] KUMAR R, ANAND A. Tribological behavior of natural fiber reinforced epoxy based composites: A review[J]. Materials Today: Proceedings,2019,18:3247-3251. doi: 10.1016/j.matpr.2019.07.200 [22] 牛永平, 王勇峰, 汪小伟, 等. 环氧树脂复合材料的摩擦学性能研究[J]. 工程塑料应用, 2015, 43(6):117-121. doi: 10.3969/j.issn.1001-3539.2015.06.026NIU Yongping, WANG Yongfeng, WANG Xiaowei, et al. Study on tribological properties of epoxy composites[J]. Engineering Plastics Application,2015,43(6):117-121(in Chinese). doi: 10.3969/j.issn.1001-3539.2015.06.026 [23] ZHAO F Y, LI G T, ÖSTERLE W, et al. Tribological investigations of glass fiber reinforced epoxy composites under oil lubrication conditions[J]. Tribology International,2016,103:208-217. doi: 10.1016/j.triboint.2016.07.002 [24] ZHOU L, FU Y W, YIN T, et al. Synergetic effect of epoxy resin and carboxylated nitrile rubber on tribological and mechanical properties of soft paper-based friction materials[J]. Tribology International,2019,129:314-322. doi: 10.1016/j.triboint.2018.08.020 [25] SONG W, YAN J C, JI H B. Fabrication of GNS/MoS2 composite with different morphology and its tribological performance as a lubricant additive[J]. Applied Surface Science,2019,469:226-235. doi: 10.1016/j.apsusc.2018.10.266 [26] XU Y F, ZHENG Q, YOU T, et al. Laser-induced improvement in tribological performances of surface coatings with MoS2 nanosheets and graphene[J]. Surface and Coatings Technology,2019,358:353-361. doi: 10.1016/j.surfcoat.2018.11.063