留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅烷偶联剂修饰下SiO2-甲基乙烯基硅橡胶分子界面的粘结性

王成江 范正阳 赵宁 周文戟

王成江, 范正阳, 赵宁, 等. 硅烷偶联剂修饰下SiO2-甲基乙烯基硅橡胶分子界面的粘结性[J]. 复合材料学报, 2020, 37(12): 3079-3090. doi: 10.13801/j.cnki.fhclxb.20200609.002
引用本文: 王成江, 范正阳, 赵宁, 等. 硅烷偶联剂修饰下SiO2-甲基乙烯基硅橡胶分子界面的粘结性[J]. 复合材料学报, 2020, 37(12): 3079-3090. doi: 10.13801/j.cnki.fhclxb.20200609.002
WANG Chengjiang, FAN Zhengyang, ZHAO Ning, et al. Adhesion of SiO2-methyl vinyl silicone rubber molecular interface modified by silane coupling agents[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3079-3090. doi: 10.13801/j.cnki.fhclxb.20200609.002
Citation: WANG Chengjiang, FAN Zhengyang, ZHAO Ning, et al. Adhesion of SiO2-methyl vinyl silicone rubber molecular interface modified by silane coupling agents[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3079-3090. doi: 10.13801/j.cnki.fhclxb.20200609.002

硅烷偶联剂修饰下SiO2-甲基乙烯基硅橡胶分子界面的粘结性

doi: 10.13801/j.cnki.fhclxb.20200609.002
基金项目: 国家自然科学基金 (51577105)
详细信息
    通讯作者:

    王成江,硕士,教授,硕士生导师,研究方向为电力设备状态监测与故障诊断、放电与绝缘等 E-mail:cj-wang@ctgu.edu.cn

  • 中图分类号: TB332;TQ333.93

Adhesion of SiO2-methyl vinyl silicone rubber molecular interface modified by silane coupling agents

  • 摘要: 纳米SiO2掺杂已经成为提升甲基乙烯基硅橡胶(MVSR)性能的有效方法,但是纳米SiO2容易发生团聚现象,将其直接掺到MVSR基体中时,纳米SiO2难以在MVSR基体中分散,从而造成SiO2-MVSR分子界面粘结效果不佳、分子界面存在缺陷等不利影响,进而无法实现提升MVSR性能的目的。为了提升SiO2-MVSR分子界面的粘结性,使纳米SiO2在MVSR基体中更易分散,本文构建了未修饰和KH550、KH560、KH570、KH792四种硅烷偶联剂修饰下的SiO2-MVSR分子界面模型,并对模型进行结构优化和分子动力学计算。通过比较不同模型中分子界面的结合能、粘结深度和粘结热稳定性的变化规律,从分子结构角度分析硅烷偶联剂修饰下SiO2-MVSR分子界面粘结性提升的原因。研究表明:提升SiO2-MVSR分子界面粘结性的关键在于优选硅烷偶联剂的非水解基团,当非水解基团中与MVSR分子链相同的化学键占比越大,包含电负性较强原子的数量越多时,修饰后SiO2-MVSR分子界面粘结性的提升效果就越好,同时,硅烷偶联剂较长的链长与较大的相对分子质量也会对粘结性的提升起到一定帮助。

     

  • 图  1  硅烷偶联剂KH560修饰过程及四种常用硅烷偶联剂的分子模型

    Figure  1.  Modification process of silane coupling agent KH560 and four kinds of molecular models of silane coupling agent

    图  2  甲基乙烯基硅橡胶(MVSR)的分子结构

    Figure  2.  Molecular structure of methyl vinyl silicone rubber (MVSR)

    图  3  MVSR分子单链模型及温度为358 K时4种硅烷偶联剂修饰下SiO2-MVSR分子界面模型的构建过程

    Figure  3.  Single chain model of MVSR and the construction process of SiO2-MVSR molecular interface model modified by 4 kinds of silane coupling agents at 358 K

    图  4  4种硅烷偶联剂修饰下SiO2-MVSR分子界面结合能随温度的变化曲线

    Figure  4.  Temperature dependence of the adhesion energy of SiO2-MVSR molecular interface modified by 4 kinds of silane coupling agents

    图  5  4种硅烷偶联剂修饰下SiO2及MVSR沿Z轴方向分布的相对浓度曲线

    Figure  5.  Relative concentration curves of SiO2 and MVSR along Z-axis under the modification of 4 kinds of silane coupling agents

    图  6  358~458 K温度下MVSR分子链的均方位移曲线

    Figure  6.  Mean square displacement curves of molecular chain of MVSR at 358~458 K

    图  7  4种硅烷偶联剂修饰下SiO2-MVSR复合材料试样的变温FTIR图谱

    Figure  7.  Temperature dependent FTIR spectra of SiO2-MVSR composites modified by 4 kinds of silane coupling agents

    表  1  不同分子界面模型中SiO2及MVSR沿Z轴方向分布的重叠区域及粘结深度

    Table  1.   Overlapping regions and adhesion depths of SiO2 and MVSR along Z-axis in different molecular interface models

    Model categoryOverlapping area/nmAdhesion depth/nm
    Unmodified 1.402-2.203 0.801
    Modified by KH550 1.522-2.971 1.449
    Modified by KH560 1.605-3.283 1.678
    Modified by KH570 1.634-3.345 1.711
    Modified by KH792 1.358-3.016 1.658
    下载: 导出CSV

    表  2  4种硅烷偶联剂的链长与相对分子质量

    Table  2.   Chain lengths and relative molecular weights of 4 kinds of silane coupling agents

    CategoryChain length/nmRelative molecular weight
    KH550 0.5426 221
    KH560 0.8965 236
    KH570 0.9140 248
    KH792 0.8639 222
    下载: 导出CSV

    表  3  4种硅烷偶联剂的结构信息

    Table  3.   Structure information of 4 kinds of silane coupling agents

    CategoryNon-hydrolytic groupCentral elementHydrolytic group
    Hetero groupSame group
    KH550 NH2 CH2—CH2—CH2 Si —(OCH3)3
    KH560 CH2—(O)CH—CH2—O—
    KH570 CH2=(CH3)C—(O)C—O—
    KH792 NH2—CH2—CH2—NH—
    下载: 导出CSV

    表  4  358~458 K温度条件下SiO2-MVSR不同分子界面模型中形成的氢键数量

    Table  4.   Numbers of hydrogen bonds formed in different SiO2-MVSR molecular interface models at 358-458 K

    Model category358 K378 K398 K418 K438 K458 K
    Unmodified 195 167 181 174 176 190
    Modified by KH550 270 258 280 287 265 265
    Modified by KH560 237 240 234 227 196 216
    Modified by KH570 242 247 243 247 231 257
    Modified by KH792 299 280 289 300 308 283
    下载: 导出CSV

    表  5  甲基乙烯基硅橡胶分子单链结构信息

    Table  5.   Single chain structure information of methyl vinyl silicone rubber

    Head/tail groupLink formationFunctional groupLink trunk
    Different groupsSame group
    —Si(CH3)3 Dimethylsiloxane chain link CH3 CH3 Si—O
    —OSi(CH3)3 Methyl vinyl siloxane chain link CH2=CH— CH3
    下载: 导出CSV

    表  6  各试样中硅烷偶联剂官能团与SiO2表面上的H—O峰位变化

    Table  6.   Peak position change of the functional group of silane coupling agent and H—O on the surface of silicon dioxide in each sample

    Model categoryΔ1/cm−1Δ2/cm−1
    Modified by KH550 19 4
    Modified by KH560 24 13
    Modified by KH570 23 9
    Modified by KH792 9 2
    Notes: Δ1—Absolute value of the difference between the peak position of the stretching vibration peak of the silane coupling agent at 358 K and the peak position at 458 K; Δ2—Absolute value of the difference between the peak position of the bending vibration peak of H—O at 358 K and the peak position at 458 K on the surface of SiO2.
    下载: 导出CSV
  • [1] 欧阳舴艋, 李双双, 石琢, 等. 改性纳米SiO2/硅橡胶复合材料的制备及性能[J]. 复合材料学报, 2019, 36(7):1700-1707.

    OUYANG Zemeng, LI Shuangshuang, SHI Zhuo, et al. Preparation and properties of modified nano-SiO2/silicone rubber composite[J]. Acta Materiae Compositae Sinica,2019,36(7):1700-1707(in Chinese).
    [2] 穆晓东, 崔雨果, 方庆红, 等. 白炭黑的功能化改性及其改性橡胶基复合材料的制备与表征[J]. 复合材料学报, 2017, 34(1):67-74.

    MU Xiaodong, CUI Yuguo, FANG Qinghong, et al. Preparation and characterization of functionalization of silica and its rubber matrix composites[J]. Acta Materiae Compositae Sinica,2017,34(1):67-74(in Chinese).
    [3] 宋英泽, 宋丽贤, 芦艾, 等. 白炭黑表面接枝乙烯基改性及其对硅橡胶硫化性能的影响[J]. 硅酸盐学报, 2013, 41(5):674-678.

    SONG Yingze, SONG Lixian, LU Ai, et al. Modi fication of silica surface by grafting vinyl and its effect on vulcanization of silicone rubber[J]. Journal of the Chinese Ceramic Society,2013,41(5):674-678(in Chinese).
    [4] 欧宝立, 李笃信. 表面修饰纳米SiO2增强增韧聚氯乙烯[J]. 复合材料学报, 2009, 26(1):48-53. doi: 10.3321/j.issn:1000-3851.2009.01.009

    OU Baoli, LI Duxin. Surface modified nano-SiO2 reinforced and toughened PVC[J]. Acta Materiae Compositae Sinica,2009,26(1):48-53(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.01.009
    [5] 杜高翔, 左然芳, 梅乐夫, 等. 硅烷偶联剂改性硅藻土及其对天然橡胶/丁苯橡胶补强效果的影响[J]. 稀有金属材料与工程, 2013, 42(1):412-417.

    DU Gaoxiang, ZUO Ranfang, MEI Lefu, et al. Surface modification of diatomite by silane coupling agent and its effect on the reinforcing efficiency of NR/SBR blend[J]. Rare Metal Materials and Engineering,2013,42(1):412-417(in Chinese).
    [6] YAN F H, ZHANG X B, LIU F, et al. Adjusting the properties of silicone rubber filled with nanosilica by changing the surface organic groups of nanosilica[J]. Composites Part B: Engineering,2015,75:47-52. doi: 10.1016/j.compositesb.2015.01.030
    [7] ZHANG X P, GUAN Y Y, ZHAO Y F, et al. Reinforcement of silicone rubber with raspberry-like SiO2@polymer composite particles[J]. Polymer International,2015,64(8):992-998. doi: 10.1002/pi.4900
    [8] 陈宇飞, 岳春艳, 李治国, 等. 有机蒙脱土/聚氨酯弹性体复合材料的微观形貌及力学性能[J]. 复合材料学报, 2019, 36(9):2086-2092.

    CHEN Yufei, YUE Chunyan, LI Zhiguo, et al. Microstruc ture and mechanical properties of organic montmorillonite/polyurethane elastomer composites[J]. Acta Materiae Compositae Sinica,2019,36(9):2086-2092(in Chinese).
    [9] 谢艳霞, 毕松梅, 王东强, 等. 聚乙烯醇修饰Sb2O3/氯丁胶乳复合材料的制备及其分散稳定性[J]. 复合材料学报, 2018, 35(9):2535-2541.

    XIE Yanxia, BI Songmei, WANG Dongqiang, et al. Preparation and dispersion stability of Sb2O3/chloroprene latex composite modified with polyvinyl alcohol[J]. Acta Materiae Compositae Sinica,2018,35(9):2535-2541(in Chinese).
    [10] SONG Y Z, YU J H, DAI D, et al. Effect of silica particles modified by in-situ and ex-situ methods on the reinforcement of silicone rubber[J]. Materials & Design,2014,64:687-693.
    [11] 张超灿, 何东铭, 郝爽. 两亲性聚合物改性二氧化硅及其与聚丙烯酸酯乳液复合体系性能研究[J]. 武汉理工大学学报, 2000, 22(6):8-17. doi: 10.3321/j.issn:1671-4431.2000.06.003

    ZHANG Chaocan, HE Dongming, HAO Shuang. Study on properties of two affinity polymer modified silica and its polyacrylate emulsion composite system[J]. Journal of Wuhan University of Technology,2000,22(6):8-17(in Chinese). doi: 10.3321/j.issn:1671-4431.2000.06.003
    [12] MA X K, NAM-HEE L, HYO-JIN O, et al. Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,358(1):172-176.
    [13] ZHU J, JONG D K, PENG H Q, et al. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization[J]. Nano Letters. 2003, 3(8): 1107-1113.
    [14] 张径晗. 二氧化硅/聚丙烯酰胺-丙烯酸核壳微球的分子动力学模拟与实验研究[D]. 成都: 西南石油大学, 2016.

    ZHANG Jinghan. Molecular dynamics simulation and experimental study of silica/polyacrylamide acrylic core-shell microspheres[D]. Chengdu: Southwest Petroleum University, 2016(in Chinese).
    [15] 高俊国, 孙伟峰, 李明, 等. 石墨纳米片/聚乙烯复合物分子动力学模拟[J]. 复合材料学报, 2018, 35(8):2274-2285.

    GAO Junguo, SUN Weifeng, LI Ming, et al. Molecular dynamics simulation of graphite-nanoplatelet/polyethylene composites[J]. Acta Materiae Compositae Sinica,2018,35(8):2274-2285(in Chinese).
    [16] 郭睿. 聚乙烯/二氧化硅纳米复合材料微观结构与电学性能仿真[D]. 哈尔滨: 哈尔滨理工大学, 2019.

    GUO Rui. Simulation of microstructure and electrical properties of polyethylene/silica nanocomposites[D]. Harbin: Harbin University of Science and Technology, 2019(in Chinese).
    [17] JENSEN A, LOHMANN S, BENZON H. Molecular dynamics simulation of aqueous solutions using interaction energy components: application to the solvation Gibbs energy[J]. Journal of Solution Chemistry,2005,34(4):407-414. doi: 10.1007/s10953-005-5191-9
    [18] 王小波. 硅烷偶联剂修饰纳米SiO2对其改性纤维素绝缘纸性能的微观机理研究[D]. 重庆: 西南大学, 2019.

    WANG Xiaobo. Study on the micro mechanism of Nano-SiO2 modified by silane coupling agent on the properties of cellulose insulating paper[D]. Chongqing: Southwest University, 2019(in Chinese).
    [19] GUN’KO V M, BORYSENKO M V, et al. Polydimethylsiloxane at the interfaces of fumed silica[J]. Applied Surface Science,2007,25(3):7143-7156.
    [20] OZAKI H, NARITA T, KOGA T, et al. Theoretical analysis of critical flowable physical gel cross-linked by metal ions and polyacrylamide-derivative associating polymers containing imidazole groups[J]. Polymers,2017,9(7):256.
    [21] SINGH P. A molecular scale perspective: Monte Carlo simulation for rupturing of ultra thin polymer film melts[J]. Physics Letters A,2017,25(2):381-386.
    [22] 陈柯旭, 芦艾, 康明, 等. 改性荧光SiO2微球在硅橡胶中分散性的可视化研究[J]. 功能材料, 2019, 50(7):7060-7065, 7070.

    CHEN Kexu, LU Ai, KANG Ming, et al. Visualization of dispersion of modified fluorescent SiO2 microspheres in silicone rubber[J]. Jorunal of Functional Materials,2019,50(7):7060-7065, 7070(in Chinese).
    [23] MA Q, MAO B, Cebe P. Chain confinement in electrospun nanocomposites[J]. Ploymer,2011,52(4):3190-3200.
    [24] 陈玉刚, 李晓, 赵慧欣, 等. 硅烷偶联剂对纳米二氧化硅/硅橡胶复合材料界面作用及性能的影响[J]. 合成橡胶工业, 2015, 38(3):200-205. doi: 10.3969/j.issn.1000-1255.2015.03.008

    CHEN Yugang, LI Xiao, ZHAO Huixin, et al. Effect of silane coupling agent on the interface action and properties of nano silica/silicone rubber composite[J]. China Synthetic Rubber Industry,2015,38(3):200-205(in Chinese). doi: 10.3969/j.issn.1000-1255.2015.03.008
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  2559
  • HTML全文浏览量:  694
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-17
  • 录用日期:  2020-06-08
  • 网络出版日期:  2020-06-10
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回