Effects of halloysite nanotubes and 2-carboxyethyl phenylphosphonic acid on flame retardant and mechanical properties of epoxy resin
-
摘要: 将埃洛石纳米管(HNTs)与2-羧乙基苯基次磷酸(CEPPA)复配并用于环氧树脂(EP)阻燃改性,制备了CEPPA-HNTs/EP复合材料。研究了HNTs与CEPPA的配比对CEPPA-HNTs/EP复合材料热稳定性、阻燃性及力学性能的影响。TG分析表明,CEPPA与HNTs复配可提高CEPPA-HNTs/EP复合材料的热稳定性,促进成炭并降低分解速率。锥形量热和极限氧指数分析表明,加入HNTs可降低EP热释放速率,而CEPPA对提高EP的极限氧指数作用更显著。残炭的红外分析及SEM结果表明,燃烧过程中CEPPA与HNTs反应生成硅铝磷酸盐促进凝聚相的脱水交联,形成更致密的炭层。力学性能分析表明,当HNTs与EP和CEPPA与EP的质量比分别为6%和4%时,CEPPA-HNTs/EP复合材料的拉伸强度和冲击强度分别提高了19.4%和17.3%,冲击断面的SEM图像显示CEPPA-HNTs/EP复合材料呈韧性断裂。
-
关键词:
- 环氧树脂 /
- 埃洛石纳米管(HNTs) /
- 2-羧乙基苯基次膦酸(CEPPA) /
- 阻燃 /
- 力学性能
Abstract: Halloysite nanotubes (HNTs) were compounded with 2-carboxyethyl phenylphosphonic acid (CEPPA) and used for modification of epoxy (EP) to prepare CEPPA-HNTs/EP composite. The effects of the ratios of CEPPA and HNTs on the thermal stability, flame retardancy and mechanical properties of the CEPPA-HNTs/EP composite were studied. TG analysis shows that the combination of CEPPA and HNTs can improve the thermal stability of the CEPPA-HNTs/EP composites, promote the carbonization and reduce the decomposition rate. The analyses of cone and limiting oxygen index show that adding HNTs can reduce the heat release rate, while CEPPA has a more significant effect on the increasing of oxygen index. The FTIR and SEM of the carbon residue show that the reaction of CEPPA and HNTs during the combustion produce silica-aluminate, which promotes the dehydration and cross-linking of the condensed phase. The analysis of mechanical properties shows that when mass ratio of HNTs to EP is 6%, mass ratio of CEPPA to EP is 4%, the tensile strength and impact strength of CEPPA-HNTs/EP composite are increased by 19.4% and 17.3%, respectively. SEM morphologies of impact sections of CEPPA-HNTs/EP composite show the characteristics of ductile fracture. -
表 1 2-羧乙基苯基次膦酸-埃洛石纳米管/环氧树脂(CEPPA-HNTs/EP)复合材料的配比(与EP的质量比)
Table 1. Formulation of 2-carboxyethyl phenylphosphonic acid-halloysite nanotubes/epoxy (CEPPA-HNTs/EP) composites (Mass ratio to EP)
Sample Component/% EP CEPPA h-HNTs MeHHPA EP 100 0 0 80 10HNTs/EP 100 0 10 80 2CEPPA-8HNTs/EP 100 2 8 80 4CEPPA-6HNTs/EP 100 4 6 80 6CEPPA-4HNTs/EP 100 6 4 80 8CEPPA-2HNTs/EP 100 8 2 80 10CEPPA/EP 100 10 0 80 Notes: h-HNTs—Surface hydroxylated HNTs; MeHHPA—Methylhexahydrophthalic anhydride. 表 2 EP、HNTs/EP、CEPPA/EP和CEPPA-HNTs/EP复合材料的TG、极限氧指数(LOI)及垂直燃烧(UL-94)测试结果
Table 2. TG, limiting oxygen index (LOI) and vertical burning (UL-94) test values of EP, HNTs/EP, CEPPA/EP and CEPPA-HNT/EP composites
Sample N2 atmosphere Air atmosphere LOI/
%UL-94 Ti/
℃Tmax/
℃Rmax/
(%·min−1)C at
700℃/%Ti/
℃Tmax1/
℃Tmax2/
℃Rmax/
(%·min−1)C700℃/% EP 351 408 21.5 4.1 332 409 549 18.0 1.0 22.7 — 10HNTs/EP 360 403 19.3 14.7 346 406 558 17.0 8.0 24.9 V-1 2CEPPA-8HNTs/EP 366 406 19.6 14.4 341 405 561 16.9 3.5 25.5 V-1 4CEPPA-6HNTs/EP 362 405 17.3 15.0 339 407 561 16.2 2.2 26.4 V-0 6CEPPA-4HNTs/EP 359 405 17.5 13.9 334 405 567 16.4 1.8 27.6 V-0 8CEPPA-2HNTs/EP 357 404 16.5 13.8 335 401 566 16.1 2.8 28.9 V-0 10CEPPA/EP 346 405 16.5 10.8 327 404 567 16.0 3.0 29.4 V-1 Notes: Ti—5% mass loss temperature; Tmax—Peak temperature of DTG cures; Rmax—Maximum rate of mass loss; C700℃—Char yield at 700℃. 表 3 EP、CEPPA/EP和CEPPA-HNTs/EP复合材料的锥形量热测试结果
Table 3. Data of cone calorimeter test of EP, CEPPA/EP and CEPPA-HNTs/EP composites
Sample TTI/s PHRR/(kW·m−2) THR/(MJ·m−2) EHC/(MJ·kg−1) EP 22 733.0 50.9 27.43 4CEPPA-6HNTs/EP 8 448.2 45.4 22.00 10CEPPPA/EP 10 568.5 40.6 22.97 Notes: TTI—Time to ignition; PHRR—Peak heat release rate; THR—Total heat release; EHC—Effective heat of combustion. -
[1] 王玉忠, 陈力. 新型阻燃材料[J]. 新型工业化, 2016, 6(1):38-61. doi: 10.3969/j.issn.2095-6649.2016.01.003WANG Yuzhong, CHEN Li. New flame retardant materials[J]. The Journal of New Induatrialization,2016,6(1):38-61(in Chinese). doi: 10.3969/j.issn.2095-6649.2016.01.003 [2] 廖利敏, 李建凤, 黄茜. 阻燃材料的研究及应用综述[J]. 山东化工, 2019, 48(17):87-88. doi: 10.3969/j.issn.1008-021X.2019.17.037LIAO Limin, LI Jianfeng, HUANG Xi. Research and application of flame retardant materials[J]. Shandong Chemical Industry,2019,48(17):87-88(in Chinese). doi: 10.3969/j.issn.1008-021X.2019.17.037 [3] MA T, GUO C. Synergistic effect between melamine cyanurate and a novel flame retardant curing agent containing a caged bicyclic phosphate on flame retardancy and thermal behavior of epoxy resins[J]. Journal of Analytical and Applied Pyrolysis,2017,124:239-246. doi: 10.1016/j.jaap.2017.02.001 [4] 李娟, 刘青, 曹佳丽, 等. 阻燃环氧树脂研究进展[J]. 合成树脂及塑料, 2016, 33(6):76-80.LI Juan, LIU Qing, CAO Jiali, et al. Research progress of flame retardant epoxy resin[J]. China Synthetic Resin and Plastics,2016,33(6):76-80(in Chinese). [5] VElENCOSO M M, BATTING A, MARKWART J C, et al. Molecular firefighting-how modern phosphorus chemistry can help solve the flame retardancy task[J]. Angewandte Chemie International Edition,2018,57(33):10450-10467. [6] CHIU S H, WU C L, LEE H T, et al. Synthesis and characterization of novel flame retardant polyurethanes containing designed phosphorus units[J]. Journal of Polymer Research,2016,23(10):205. [7] LI J J, DUAN R T, ZHANG J B, et al. Phosphorus-containing poly(ethylene terephthalate): Solid-state polymerization and its sequential distribution[J]. Industrial & Engineering Chemistry Research,2013,2(15):5326-5333. [8] 王志国, 梁兵, 刘徐越. 磷氮阻燃剂PDAB-DOPO的制备及阻燃环氧树脂复合材料性能研究[J]. 化工新型材料, 2018, 46(12):68-71.WANG Zhiguo, LIANG Bing, LIU Xuyue. Preparation of phosphorous-nitrigen PDAB-DOPO and its flame retardant epoxy resin[J]. New Chemical Materials,2018,46(12):68-71(in Chinese). [9] 程振宁, 汪凌峰, 李皓, 等. 2-羧乙基苯基次膦酸阻燃/固化环氧树脂[J]. 塑料, 2016, 45(2):54-57.CHENG Zhenning, WANG Lingfeng, LI Hao, et al. 2-carboxyethyl phenylphosphinic acid flame retardant/cured epoxy resin[J]. Plastics,2016,45(2):54-57(in Chinese). [10] 刘学清, 刘继延, 蔡少君, 等. 甲基丁基次膦酸铝/环氧树脂阻燃复合材料性能研究[J]. 塑料工业, 2012, 40(2):79-82.LIU Xueqing, LIU Jiyan, CAI Shaojun, et al. Study on properties of aluminum methyl butylphosphinate/epoxy resin composite[J]. China Plastics Industry,2012,40(2):79-82(in Chinese). [11] 邹政平, 肖啸, 田杰, 等. 无卤阻燃型环氧树脂的研究进展[J]. 合成树脂及塑料, 2020, 37(1):97-102.ZOU Zhengping, XIAO Xiao, TIAN Jie, et al. Research progress of halogen-free flame retardant epoxy resin[J]. China Synthetic Resin and Plastics,2020,37(1):97-102(in Chinese). [12] 吴伟国. 含P、N、Si的阻燃环氧树脂的研究进展[J]. 合成材料老化与应用, 2017, 46(5):120-125.WU Weiguo. Research progress of flame retardant epoxy resins containing P, N, and Si[J]. Synthetic Materials Aging and Application,2017,46(5):120-125(in Chinese). [13] 董美丽, 武保林, 胡泊. 有机磷阻燃剂对环氧树脂性能的影响[J]. 消防科学与技术, 2017, 36(12):1698-1702. doi: 10.3969/j.issn.1009-0029.2017.12.020DONG Meili, WU Baolin, HU Po. The effect of organic-phosphorus flame retardant on the performance of epoxy resin[J]. Fire Science and Technology,2017,36(12):1698-1702(in Chinese). doi: 10.3969/j.issn.1009-0029.2017.12.020 [14] 袁智慧, 牛永平, 汪小伟, 等. 环氧树脂增韧机理及研究进展[J]. 热固性树脂, 2019, 34(6):65-70.YUAN Zhihui, NIU Yongping, WANG Xiaowei, et al. Toughening mechanism and research progress of epoxy resin[J]. Thermosetting Resin,2019,34(6):65-70(in Chinese). [15] 胡芳芳, 聂小安. 碳纳米管增强环氧树脂基复合材料研究进展[J]. 热固性树脂, 2019, 34(1):60-65.HU Fangfang, NIE Xiaoan. Research progress of carbon nanotube reinforced epoxy-based composites[J]. Thermosetting Resin,2019,34(1):60-65(in Chinese). [16] YUAN P, TAN D Y, ANNABI-BERGAYA F. Properties and applications of halloysite nanotubes: Recent research advances and future prospects[J]. Applied Clay Science,2015,112-113:75-93. doi: 10.1016/j.clay.2015.05.001 [17] ATTIA N F, HASSAN M A, NOUR M A, et al. Flame-retardant materials: Synergistic effect of halloysite nanotubes on the flammability properties of acrylonitrile-butadiene-styrene composites[J]. Polymer International,2014,63(7):1168-1173. doi: 10.1002/pi.4653 [18] EMAD S G, YOONA R, SHIMA H, et al. Halloysite nanotubes as smart flame retardant and economic reinforcing materials: A review[J]. Thermochimica Acta,2018,669:173-184. doi: 10.1016/j.tca.2018.09.017 [19] BOONKONGKAEW M, SIRISINHA K. Halloysite nanotubes loaded with liquid organophosphate for enhanced flame retardancy and mechanical properties of polyamide 6[J]. Journal of Materials Science,2018,53(14):10181-10193. doi: 10.1007/s10853-018-2351-z [20] 丁勇, 罗远芳, 薛锋, 等. 改性埃洛石复配聚磷酸铵对硅橡胶阻燃性能和力学性能的影响[J]. 高分子材料科学与工程, 2017, 33(10):58-64, 71.DING Yong, LUO Yuanfang, XUE Feng, et al. Effect of modified halloysite compound ammonium polyphosphate on flame retardancy and mechanical properties of silicone rubber[J]. Polymeric Materials Science and Engineering,2017,33(10):58-64, 71(in Chinese). [21] 王亚飞, 赵静, 蔡学明, 等. 聚丙烯/埃洛石纳米管复合材料的力学性能及阻燃性能[J]. 中国塑料, 2016, 30(8):39-42.WANG Yafei, ZHAO Jing, CAI Xueming, et al. Mechanical and flame retardant properties of polypropylene/halloysite nanotube composites[J]. China Plastics,2016,30(8):39-42(in Chinese). [22] 中国国家标准化管理委员会. 塑料燃烧性能试验方法 氧指数法: GB/T 2406—1993[S]. 北京: 中国标准出版社, 1994.Standardization Administration of of the people’s Republic of China. Plastics: Determination of fammability by oxygen index: GB/T 2406—1993[S]. Beijing: China Standards Press, 1994(in Chinese). [23] 中国国家标准化管理委员会. 塑料 燃烧性能的测定 水平法和垂直法: GB/T 2408—2008[S]. 北京: 中国标准出版社, 2009.Standardization Administration of of the people’s Republic of China. Plastics: Determination of burning characteristics: Horizontal and vertical test: GB/T 2408—2008[S]. Beijing: China Standards Press, 2009(in Chinese). [24] International Organization for Standardization. Reaction-to-fire tests: Heat release, smoke production and mass loss rate Part 1: Heat release rate (cone calorimeter method): ISO 5660—1∶2002[S]. Geneva: International Organization for Standardization, 2002. [25] 中国国家标准化管理委员会. 塑料 拉伸性能的测定: GB/T 1040—2006[S]. 北京: 中国标准出版社, 2007.Standardization Administration of of the people’s Republic of China. Plastics: Determination of tensile properties: GB/T 1040—2006[S]. Beijing: China Standards Press, 2007(in Chinese). [26] 中国国家标准化管理委员会. 塑料 悬臂梁冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2009.Standardization Administration of of the people’s Republic of China. Plastics: Determination of izod impact strength: GB/T 1843—2008[S]. Beijing: China Standards Press, 2009(in Chinese). [27] TAN Z W, SUN J, ZHANG M, et al. Phosphorus-containing polymers from THPS Ⅱ: Synthesis and property of phosphorus-containing hyperbranched aromatic-aliphatic polyamides[J]. Designed Monomers and Polymers,2015,18(3):222-231. doi: 10.1080/15685551.2014.999461 [28] ZHENG T C, NI X Y. Loading organophosphorous flame retardant to halloysite nanotubes for modifying UV-curable epoxy resin[J]. RSC Advances,2016,6(62):57122-57130. doi: 10.1039/C6RA08178A [29] 刘聪, 罗远芳, 贾志欣, 等. PVC/改性埃洛石纳米管纳米复合材料的制备与性能[J]. 华南理工大学学报(自然科学版), 2011, 39(6):71-76.LIU Cong, LUO Yuanfang, JIA Zhixin, et al. Preparation and properties of PVC/modified halloysite nanotube nanocomposites[J]. Journal of South China University of Technology (Natural Science Edition),2011,39(6):71-76(in Chinese). [30] DENG S Q, ZHANG J N, YE L, et al. Toughening epoxies with halloysite nanotubes[J]. Polymer,2008,49(23):5119-5127. doi: 10.1016/j.polymer.2008.09.027 [31] ZENG S S, CHRISTOPHER R, LIU J J, et al. Facile hydroxylation of halloysite nanotubes for epoxy nanocomposite applications[J]. Polymer,2014,55(25):6519-6528. doi: 10.1016/j.polymer.2014.10.044