Anodic bonding applied to flexible packaging using polymer elastomer composites
-
摘要: 采用预聚体法制备了三种应用于阳极键合柔性封装的聚合物复合弹性体(PEO-PUEs)阴极材料,并在室温下浇注固化。PEO-PUEs复合材料具有良好的耐热性和柔顺性,5%热分解温度Td,5%高于250℃,玻璃化转变温度Tg低于−40℃,且力学性能良好。当1,4-丁二醇(BDO)含量为50wt%、三羟甲基丙烷(TMP)含量为50wt%、SiO2含量为1wt%时,PEO-PUEs复合材料在阳极键合温度下(65℃)具有较高的离子导电率,PEO-PUEs复合材料的离子导电率最高可达1.50×10−3 S·cm−1,符合阳极键合对阴极材料的要求。设计了专用于聚合物复合材料的热引导动态场阳极键合工艺,并成功应用于PEO-PUEs复合材料与Al箔的阳极键合连接,当BDO含量为50wt%、TMP含量为50wt%、SiO2含量为1wt%时,PEO-PUEs复合材料和Al箔阳极键合的连接性能最好,键合界面拉伸强度达1.26 MPa。通过与传统阳极键合工艺对比,热引导动态场阳极键合具有稳定致密的中间键合层,峰值电流和键合时间明显增大,键合界面强度高。本研究从制备聚合物阴极材料和设计相应的阳极键合工艺两个方面,为阳极键合在柔性封装的实际应用提供一些理论基础和参考经验。Abstract: Three kinds of polymer elastomer (PEO-PUEs) composites as cathode materials for anodic bonding were prepared via pre-polymerization method casted and cured at room temperature. The PEO-PUEs composites were characterized by good heat resistance that the 5% thermal decomposition temperatures Td,5% are higher than 250℃. The glass transition temperatures Tg are lower than −40℃ showing good flexibility. The PEO-PUEs composites have good mechanical properties. All PEO-PUEs composites have high ionic conductivity meeting the requirements of anodic bonding for cathode materials, and the highest value at 65℃ (the temperature required for anodic bonding) is reached to 1.50×10−3 S·cm−1 for PEO-PUEs composites (butane-1,4-diol (BDO) content is 50wt%, trimethylolpropane (TMP) content is 50wt% and SiO2 content is 1wt%). The anodic bonding by thermal guidance and dynamic field for polymer materials was designed, which was successfully used for jointing of PEO-PUEs composites with Al foil. When BDO content is 50wt%, TMP content is 50wt% and SiO2 content is 1wt%, the PEO-PUEs composites with Al foil have the best bonding performance, and the highest value of tensile strength can reach to 1.26 MPa. Compared with the traditional anodic bonding, the joint of PEO-PUEs composites with Al by anodic bonding designed with thermal guidance and dynamic field have a stable and dense intermediate bonding layer, and the peak current and bonding time are significantly improved, and the bonding interface strengthes are higher. This study provides some theoretical basis and reference experience for the practical application of anodic bonding in flexible packaging from the aspects of preparing polymer cathode materials and designing the corresponding anodic bonding process.
-
Key words:
- anodic bonding /
- polyurethane elastomer /
- ionic conductivity /
- flexible packaging /
- polymer electrolyte
-
图 1 聚合物复合弹性体阴极材料(PEO-PUEs)的制备工艺流程图
Figure 1. Fabrication process flow chart of polymer elastomer composites (PEO-PUEs)
PEO—Poly(ethylene oxide); DCM—Dichloromethane; LiTFSI—Lithium bis (trifluoromethanesulphonyl) imide; PTMG—Poly (tetrahydrofuran); TDI-100—2,4-Toluene diisocynate; BDO—Butane-1,4-diol; TMP—Trimethylolpropane
表 1 PEO-PUEs复合材料配方
Table 1. Formula composition of PEO-PUEs composites
Sample NCO group of
prepolymer/wt%Chain extension
coefficientPEO based
electrolyte/wt%Composition of chain extender SiO2/wt% BDO/wt% TMP/wt% PEO-PUE1 6 0.9 10 100 0 0 PEO-PUE2 6 0.9 10 50 50 0 PEO-PUE3 6 0.9 10 50 50 1 Note: The content of SiO2 is calculated in terms of different percentages mass of prepolymer. 表 2 PEO-PUEs复合材料的热性能和离子导电率
Table 2. Thermal properties and ionic conductivities of PEO-PUEs composites
Sample Td,5%/
℃Tg/
℃Bulk resistance/Ω Ionic conductivity/
(10−3 S·cm−1)PEO-PUE1 254 −49.54 90.92 1.10 PEO-PUE2 267 −46.81 76.11 1.31 PEO-PUE3 275 −42.78 66.72 1.50 Notes: Td,5%—5% thermal decomposition temperature; Tg—Glass transition temperature. 表 3 PEO-PUEs复合材料的力学性能
Table 3. Mechanical properties of PEO-PUEs composites
Sample Shore A hardness Tensile strength/MPa Tear strength/MPa Elongation at break/% PEO-PUE1 27±2 3.5±0.3 8.9±0.7 441±16 PEO-PUE2 34±2 4.7±0.3 9.4±0.7 385±16 PEO-PUE3 39±2 5.8±0.3 10.7±0.7 331±16 表 4 PEO-PUEs/Al和PEO-PUEs/Al*的峰值电流、键合时间和界面强度
Table 4. Peak current, bonding time and interface strength of PEO-PUEs/Al and PEO-PUEs/Al*
Sample Peak
current/mABonding
time/sTensile
strength/MPaSample Peak
current/mABonding
time/sTensile
strength/MPaPEO-PUE1/Al 10.4 77.8 0.85 PEO-PUE1/Al* 9.5 46.0 0.11 PEO-PUE2/Al 13.7 86.0 1.09 PEO-PUE2/Al* 11.8 50.0 0.15 PEO-PUE3/Al 15.3 93.8 1.26 PEO-PUE3/Al* 13.8 54.1 0.23 -
[1] KNAPKIEWICZ P. Ultra-low temperature anodic bonding of silicon and borosilicate glass[J]. Semiconductor Science and Technology,2019,34(3):035005. doi: 10.1088/1361-6641/aafecc [2] HU L F, XUE Y Z, WANG H. Glass-Cu joining by anodic bonding and soldering with eutectic Sn-9Zn solder[J]. Journal of Alloys and Compounds,2019,789:558-566. doi: 10.1016/j.jallcom.2019.02.257 [3] ADITI, GOPAL R. Fabrication of MEMS xylophone magnetometer by anodic bonding technique using SOI wafer[J]. Microsystem Technologies,2017,23(1):81-90. doi: 10.1007/s00542-016-2812-8 [4] SZESZ E M, LEPIENSKI C M. Anodic bonding of titanium alloy with bioactive glass[J]. Journal of Non-Crystalline Solids,2017,471:19-27. doi: 10.1016/j.jnoncrysol.2017.04.038 [5] WOETZEL S, IHRING A, KESSLER E, et al. Hermetic sealing of MEMS including lateral feedthroughs and room-temperature anodic bonding[J]. Journal of Micromechanics and Microengineering,2018,28(7):075013. [6] TANG J L, CAI C, MING X X, et al. Morphology and stress at silicon-glass interface in anodic bonding[J]. Applied Surface Science,2016,387:139-148. doi: 10.1016/j.apsusc.2016.06.076 [7] DU C, LIU C R, YIN X. Polyethylene glycol-based solid polymer electrolytes: Encapsulation materials with excellent anodic bonding performance[J]. Journal of Inorganic and Organometallic Polymers and Materials,2017,27(5):1521-1525. doi: 10.1007/s10904-017-0612-y [8] DU C, LIU C R, YIN X. Effect of cooling mode on anodic bonding properties of solid polymer electrolytes[J]. Journal of Inorganic and Organometallic Polymers and Materials,2018,28(1):146-151. doi: 10.1007/s10904-017-0658-x [9] WU Y L, LI X F, ZHAO H C, et al. Pyrene-based hyperbranched porous polymers with doped Ir(piq)2(acac) red emitter for highly effcient white polymer light-emitting diodes[J]. Organic Electronics,2020,76:105487. doi: 10.1016/j.orgel.2019.105487 [10] WEI X Z, GAO L, MIAO Y Q, et al. A new strategy for structuring white organic light-emitting diodes by combining complementary emissions in the same interface[J]. Journal of Materials Chemistry C,2020,8(8):2772-2779. doi: 10.1039/C9TC06198C [11] MIAO Y Q, WANG K X, ZHAO B, et al. High-efficiency/CRI/color stability warm white organic light-emitting diodes by incorporating ultrathin phosphorescence layers in a blue fluorescence layer[J]. Nanophotonics,2018,7(1):295-304. doi: 10.1515/nanoph-2017-0021 [12] HU L, XUE Y, SHI F. Interfacial investigation and mechanical properties of glass-Al-glass anodic bonding process[J]. Journal of Micromechanics & Microengineering,2017,27:105004. [13] JOYCE R, SINGH K, VARGHESE S, et al. Effective cleaning process and its influence on surface roughness in anodic bonding for semiconductor device packaging[J]. Materials Science in Semiconductor Processing,2015,31:84-93. doi: 10.1016/j.mssp.2014.11.002 [14] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.Standardization Administration of of the people’s Republic of China. Rubber, vulcanized or thermoplastic: Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese). [15] WANG H L, YU J T, FANG H G, et al. Largely improved mechanical properties of a biodegradable polyurethane elastomer via polylactide stereocomplexation[J]. Polymer,2018,137:1-12. doi: 10.1016/j.polymer.2017.12.067 [16] HE W S, CUI Z L, LIU X C, et al. Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries[J]. Electrochimica Acta,2017,225:151-159. doi: 10.1016/j.electacta.2016.12.113 [17] 赵浩成, 张伟玄, 武钰铃, 等. 基于静电键合的聚醚型聚氨酯基固体电解质柔性封装材料[J]. 功能材料, 2019, 50(7):7040-7045. doi: 10.3969/j.issn.1001-9731.2019.07.008ZHAO H C, ZHANG W X, WU Y L, et al. Polyether-based polyurethane solid electrolyte flexible encapsulation material based on electrostatic bonding[J]. Journal of Functional Materials,2019,50(7):7040-7045(in Chinese). doi: 10.3969/j.issn.1001-9731.2019.07.008 [18] ZHAO H C, ZHANG W X, YIN X, et al. Conductive polyurethane elastomer electrolyte (PUEE) materials for anodic bonding[J]. RSC Advances,2020,10(22):13267-13276. doi: 10.1039/C9RA10944G [19] DU C, LIU C R, YIN X, et al. Synthesis and bonding performance of conductive polymer containing rare earth oxides[J]. Journal of Inorganic and Organometallic Polymers and Materials,2018,28(3):746-750. doi: 10.1007/s10904-017-0713-7 [20] FENG G, LI Z, XU X, et al. Glass-copper anodic bonding through activated Sn-0.6Al solder[J]. Journal of Materials Processing Technology,2018,254:108-113. doi: 10.1016/j.jmatprotec.2017.11.038 [21] OPREA S, POTOLINCA V O, OPREA V. Synthesis and properties of new crosslinked polyurethane elastomers based on isosorbide[J]. European Polymer Journal,2016,83:161-172. doi: 10.1016/j.eurpolymj.2016.08.020 [22] CAO L J, YANG M Y, WU D, et al. Biopolymer-chitosan based supramolecular hydrogels as solid-state electrolytes for electrochemical energy storage[J]. Chemical Communications,2017,53(10):1615-1618. doi: 10.1039/C6CC08658F [23] TAN L, DENG Y Y, CAO Q, et al. Gel electrolytes based on polyacrylonitrile/thermoplastic polyurethane/polystyrene for lithium-ion batteries[J]. Ionics,2019,25(8):3673-3682. doi: 10.1007/s11581-019-02940-7 [24] MUNDINAMANI S. The choice of noble electrolyte for symmetric polyurethane-graphene composite supercapacitors[J]. International Journal of Hydrogen Energy,2019,44(21):11240-11246. doi: 10.1016/j.ijhydene.2019.02.164 [25] BAO J J, QU X B, QI G Q, et al. Solid electrolyte based on waterborne polyurethane and poly(ethylene oxide) blend polymer for all-solid-state lithium ion batteries[J]. Solid State Ionics,2018,320:55-63. doi: 10.1016/j.ssi.2018.02.030 [26] KHANDAN O, STARK D, CHANG A, et al. Wafer-scale titanium anodic bonding for microfluidic applications[J]. Sensors & Actuators B: Chemical,2014,205:244-248.