留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于真空热压扩散法的金刚石/Ti界面生成机制

袁建东 于爱兵 孙磊 王燕琳 迟剑英

袁建东, 于爱兵, 孙磊, 等. 基于真空热压扩散法的金刚石/Ti界面生成机制[J]. 复合材料学报, 2020, 37(12): 3168-3176. doi: 10.13801/j.cnki.fhclxb.20200519.001
引用本文: 袁建东, 于爱兵, 孙磊, 等. 基于真空热压扩散法的金刚石/Ti界面生成机制[J]. 复合材料学报, 2020, 37(12): 3168-3176. doi: 10.13801/j.cnki.fhclxb.20200519.001
YUAN Jiandong, YU Aibing, SUN Lei, et al. Formation mechanism of diamond/Ti interface based on vacuum hotpressing diffusion method[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3168-3176. doi: 10.13801/j.cnki.fhclxb.20200519.001
Citation: YUAN Jiandong, YU Aibing, SUN Lei, et al. Formation mechanism of diamond/Ti interface based on vacuum hotpressing diffusion method[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3168-3176. doi: 10.13801/j.cnki.fhclxb.20200519.001

基于真空热压扩散法的金刚石/Ti界面生成机制

doi: 10.13801/j.cnki.fhclxb.20200519.001
基金项目: 国家自然科学基金(51875294);宁波市自然科学基金(2018A610153);宁波市科技创新2025重大专项(2018B10006)
详细信息
    通讯作者:

    于爱兵,博士,教授,博士生导师,研究方向为切削加工技术及表面工程 E-mail:yuaibing@nbu.edu.cn

  • 中图分类号: TB3333

Formation mechanism of diamond/Ti interface based on vacuum hotpressing diffusion method

  • 摘要: 采用真空热压扩散法在聚晶金刚石表面制备Ti层,探究金刚石表面金属化过程中的界面生成机制。利用扫描电子显微镜和X射线衍射仪,分析了钛层的表面形貌、界面结构和界面间的物相组成,采用能谱仪对界面进行了元素分析,计算了聚晶金刚石与Ti层之间界面的扩散带宽度及生成TiC的化学反应吉布斯自由能变。研究结果表明:在聚晶金刚石表面形成了平整、致密的Ti层,在聚晶金刚石与Ti层界面之间存在C、Ti和Co元素的扩散,在结合界面处产生了一定宽度的元素扩散带,同时在金刚石表面生成了点状TiC。真空热压扩散法实现了金刚石与Ti层的化学结合,可以提高金刚石与Ti层的结合强度。

     

  • 图  1  真空热压扩散实验的试样装夹示意图

    Figure  1.  Schematic diagram of specimen clamping for vacuum hot pressing diffusion method

    图  2  Ti层表面的SEM图像

    Figure  2.  SEM image of Ti coating layer

    图  3  PCD/Ti界面的SEM图像

    Figure  3.  SEM images of PCD/Ti interface

    图  4  PCD与Ti层的界面EDS结果

    Figure  4.  EDS analysis of interface between PCD and Ti layer

    图  5  PCD与Ti层的界面EDS能谱分析

    Figure  5.  EDS spectra analysis of interface between PCD and Ti layer

    图  6  C在Ti中的扩散系数D与温度T的关系

    Figure  6.  Relationship between C diffusion coefficient D and temperature T in Ti

    图  7  镀Ti与未镀Ti的PCD表面形貌对比

    Figure  7.  Comparison of PCD surface morphologies with coating of Ti and without coating

    图  8  不同区域的PCD表面XRD图谱

    Figure  8.  XRD patterns of PCD surface on different regions

    图  9  图7中表面形貌的局部放大

    Figure  9.  Local magnification images of surface morphologies in Fig. 7

    图  10  PCD与Ti箔的真空热压扩散过程示意图

    Figure  10.  Schematic diagrams of vacuum hot pressing diffusion processes between PCD and Ti film

    表  1  钛箔和PCD的化学成分

    Table  1.   Chemical composition of TA1 and PCD

    MaterialC/wt%Fe/wt%Ti/wt%Co/wt%W/wt%Si/wt%N/wt%H/wt%
    TA1 0.01 0.05 99.87 0.05 0.015 0.005
    PCD 88.12 8.99 2.89
    Notes: TA1—Pure titanium grade TA1;PCD—Polycrystalline diamond.
    下载: 导出CSV
  • [1] 龙伟民. 超硬工具钎焊技术[M]. 郑州: 河南科学技术出版社, 2017: 1-4.

    LONG Weimin. Brazing technology of superhard tools[M]. Zhengzhou: Henan Science and Technology Press, 2017: 1-4(in Chinese).
    [2] BLANK V, POPOV M, PIVOVAROV G, et al. Mechanical properties of different types of diamond[J]. Diamond and Related Materials,1999,8(8-9):1531-1535. doi: 10.1016/S0925-9635(99)00079-5
    [3] QURESHI A, GURBUZ Y, HOWELL M, et al. Nanocrystalline diamond film for biosensor applications[J]. Diamond and Related Materials,2010,19(5-6):457-461. doi: 10.1016/j.diamond.2010.01.012
    [4] ZHANG C, WANG R C, CAI Z Y, et al. Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing[J]. Surface and Coatings Technology,2015,277:299-307. doi: 10.1016/j.surfcoat.2015.07.059
    [5] 张晓宇, 蔺伟康, 许旻 , 等. 添加稀土 Nd 改善金刚石/铜复合材料界面[J]. 表面技术, 2018, 47(5):27-32.

    ZHANG Xiaoyu, LIN Weikang, XU Min, et al. Addition of rare earth neodymium to improve interface of diamond/copper composites[J]. Surface Technology,2018,47(5):27-32(in Chinese).
    [6] 郭宏, 王光宗, 贾成厂, 等. 高压熔渗金刚石/铜复合材料的低温导热特性[J]. 复合材料学报, 2014, 31(3):550-555.

    GUO Hong, WANG Guangzong, JIA Chengchang, et al. Low-temperature heat conduction characteristics of diamond/Cu composite by high pressure infiltration[J]. Acta Materiae Compositae Sinica,2014,31(3):550-555(in Chinese).
    [7] ZHU Y F, WANG L, YAO W Q, et al. The interface diffusion and reaction between Cr layer and diamond particle during metallization[J]. Applied Surface Science,2001,171(1-2):143-150. doi: 10.1016/S0169-4332(00)00555-9
    [8] KHMELNITSKY R A, EVLASHIN S A, MARTOVITSKY V P, et al. Heteroepitaxy of Ni-based alloys on diamond[J]. Crystal Growth & Design,2016,16(3):1420-1427.
    [9] 王元元, 马捷, 李辉, 等. 金刚石粉体表面 CVD 法镀钨的工艺研究[J]. 表面技术, 2017, 46(2):98-102.

    WANG Yuanyuan, MA Jie, LI Hui, et al. Technical study of tungsten plating on surface of diamond powder by CVD[J]. Surface Technology,2017,46(2):98-102(in Chinese).
    [10] 向波, 谢志刚, 贺跃辉, 等. 金刚石表面镀覆金属钨的新方法[J]. 中国有色金属学报, 2007, 17(9):1511-1515. doi: 10.3321/j.issn:1004-0609.2007.09.021

    XIANG Bo, XIE Zhigang, HE Yuehui, et al. Novel method for coating tungsten on diamond[J]. Journal of Nonferrous Metals,2007,17(9):1511-1515(in Chinese). doi: 10.3321/j.issn:1004-0609.2007.09.021
    [11] ABYZOV A M, KIDALOV S V, SHAKHOV F M. High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application[J]. Applied Thermal Engineering,2012,48:72-80. doi: 10.1016/j.applthermaleng.2012.04.063
    [12] ZUO Z, HU B, CHEN H, et al. Effect of activators on the properties of nickel coated diamond composite powders[J]. Journal of Materials Science & Technology,2017,33(11):1409-1415.
    [13] BEX P. The influence of temperature and heating time on PCD performance[J]. Industrial Diamond Review,1984,44(502):128-139.
    [14] 邹家生. 材料连接原理与工艺[M]. 哈尔滨: 哈尔滨工业大学出版社, 2005: 356-357.

    ZOU Jiasheng. Principles and technology of material connection[M]. Harbin: Harbin Institute of Technology Press, 2005: 356-357(in Chinese).
    [15] 丁大伟, 陈燕, 傅玉灿. 含硼金刚石钎焊界面分析及磨粒强度研究[J]. 金刚石与磨料磨具工程, 2015, 35(5):9-14.

    DING Dawei, CHEN Yan, FU Yucan. Investigation of grain strength and interfacial microstructure in the brazed joint of boron-doped diamond[J]. Diamond & Abrasives Engineering,2015,35(5):9-14(in Chinese).
    [16] TANABE J, SASAKI T, KISHI S. Diffusion bonding of Ti/graphite and Ti/diamond by hot isostatic pressing method[J]. Journal of Materials Processing Technology,2007,192:453-458.
    [17] ZHANG Y, ZHANG H L, WU J H, et al. Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles[J]. Scripta Materialia,2011,65(12):1097-1100. doi: 10.1016/j.scriptamat.2011.09.028
    [18] 靳正国, 郭瑞松, 师春生. 材料科学基础[M]. 天津: 天津大学出版社, 2008: 231-244.

    JIN Zhengguo, GUO Ruisong, SHI Chunsheng. Foundation of materials science[M]. Tianjin: Tianjin University Press, 2008: 231-244 (in Chinese).
    [19] 杨浩. 钛表面等离子无氢渗碳及其耐腐蚀性能研究[D]. 沈阳: 东北大学, 2011: 34-35.

    YANG Hao. Plasma non-hydrogen carburizing on titanium surface and its corrosion resistance[D]. Shenyang: Northeastern University, 2011: 34-35 (in Chinese).
    [20] 王娟, 李亚江. 钎焊与扩散焊[M]. 北京: 化学工业出版社, 2016: 197-199.

    WANG Juan, LI Yajiang. Brazing and diffusion welding[M]. Beijing: Chemical Industry Press, 2016: 197-199 (in Chinese).
    [21] 丁大伟, 陈燕, 傅玉灿. 镀钛金刚石钎焊界面微区结构分析[J]. 南京航空航天大学学报, 2016, 48(9):879-883.

    DING Dawei, CHEN Yan, FU Yucan. Brazing interface microstructure analysis of Ti-coated diamond[J]. Journal of Nanjing University of Aeronautics & Astronautics,2016,48(9):879-883(in Chinese).
    [22] 王艳辉, 王明智, 关长斌, 等. Ti镀层对金刚石-铜基合金复合材料界面结构和性能的作用[J]. 复合材料学报, 1993, 10(2):107-112. doi: 10.3321/j.issn:1000-3851.1993.02.001

    WANG Yanhui, WANG Mingzhi, GUAN Changbin, et al. Effect of Ti coating on the interfacial structure and properties of diamond-copper-based alloy composites[J]. Acta Materiae Compositae Sinica,1993,10(2):107-112(in Chinese). doi: 10.3321/j.issn:1000-3851.1993.02.001
    [23] 伊赫桑·巴伦. 纯物质热化学数据手册(上、下卷)[M]. 北京: 科学出版社, 2003: 211, 1666-1674.

    IHSAN Barron. Thermochemical data of pure substances(Volume 1 and 2)[M]. Beijing: Science Press, 2003: 211, 1666-1674 (in Chinese).
    [24] LEROY W P, DETAVERNIER C, VAN MEIRHAEGHE R L, et al. Thin film solid-state reactions forming carbides as contact materialsfor carbon-containing semiconductors[J]. Journal of Applied Physics,2007,101(5):053714. doi: 10.1063/1.2561173
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1023
  • HTML全文浏览量:  337
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-21
  • 录用日期:  2020-05-14
  • 网络出版日期:  2020-05-19
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回