Expandable graphite microencapsulated with polyurea shell flame retardant natural rubber
-
摘要: 以聚脲材料为壳材包覆可膨胀石墨(EG),并在囊壁上嵌入CuO提高壁材的导热性能,从而获得可膨胀石墨微胶囊(EG@PO),然后将制备的EG@PO与聚磷酸铵(APP)复合应用于阻燃天然橡胶(NR)。通过SEM、热失重和红外光谱分析等手段对EG@PO进行表征。通过极限氧指数、垂直燃烧测试、热失重测试、锥形量热仪和导热系数测定仪等手段测试不同添加量的EG@PO对NR热稳定性、阻燃性、产烟性和热传导性等的影响。结果表明,成功利用聚脲材料包覆EG,并在囊壁上嵌入CuO。EG@PO和APP协同作用提高了NR的阻燃性能和热稳定性。当EG@PO添加量为6 g时,EG@PO/NR复合材料的极限氧指数为28.3%,垂直燃烧法测试结果达到V-0级,600℃时的残炭量达到27.5%。且热释放速率和总热释放量均出现大幅下降,相比于纯天然橡胶,最大热释速率和总热释放量分别降低了49.8%和25.7%,分别为467.7 kW/m2和48.4 MJ/m2。与此同时,镶嵌在微胶囊囊壁中的CuO有助于热量在NR基体和EG之间的传递,EG@PO/NR复合材料的导热系数最高为0.266 W/(m·K)。Abstract: The expandable graphite (EG) was microencapsulated by polyurea, and CuO was doped into the shell of the expandable graphite microcapsule (EG@PO) in order to improve the thermal conductivity of the shell. The microcapsules were characterized by SEM, thermogravimetric analysis and Fourier transform infrared spectroscopy. The effect of EG@PO and ammonium polyphosphate (APP) on the flame retardant properties of natural rubber (NR) was also investigated by limited oxygen index test, vertical burning test, thermogravimetric analysis, cone calorimeter test and thermal conductivity measurement. The results show that when mass of EG@PO is 6 g, the limited oxygen index of EG@PO/NR composite is 28.3%, and the vertical burning of composite reaches to V-0. The residual mass is 27.5% at 600℃. Furthermore, the heat release rate and total heat release of EG@PO/NR composites decrease dramatically to 467.7 kW/m2 and 48.4 MJ/m2, respectively, which is 49.8% and 25.7% lower than that of the pure NR. At the same time, the thermal conductivity of EG@PO/NR composites increases to 0.266 W/(m·K), because the CuO doped into the shell is beneficial to the heat transfer between the NR matrix and EG.
-
Key words:
- natural rubber /
- expandable graphite /
- ammonium polyphosphate /
- flame retardant /
- thermal conductivity
-
表 1 嵌入CuO的聚脲材料包覆可膨胀石墨微胶囊/天然橡胶(EG@PO/NR)复合材料的配方
Table 1. Formula of expandable graphite microencapsulated with polyurea and CuO/natural rubber (EG@PO/NR) composites
Sample NR/g EG@PO/g APP/g EG@PO/NR0 100 0 0 EG@PO/NR1 100 3 3 EG@PO/NR2 100 6 6 EG@PO/NR3 100 9 9 EG@PO/NR4 100 12 12 Note: APP—Ammonium polyphosphate. 表 2 EG@PO/NR复合材料的极限氧指数(LOI)和垂直燃烧等级
Table 2. Limiting oxygen index (LOI) and vertical burn rating of EG@PO/NR composites
Sample LOI/% Vertical burn rating EG@PO/NR0 17.6 No rating EG@PO/NR1 19.8 No rating EG@PO/NR2 23.8 V-1 EG@PO/NR3 26.7 V-0 EG@PO/NR4 28.3 V-0 表 3 EG@PO/NR复合材料在N2气氛中TG测试结果
Table 3. TG test data of EG@PO/NR composites in N2
Sample T5%/℃ T10%/℃ T20%/℃ T50%/℃ W600℃/% EG@PO/NR0 286.6 336.2 359.3 385.0 19.9 EG@PO/NR1 272.3 316.4 351.5 392.2 22.6 EG@PO/NR2 264.6 311.1 349.6 394.6 24.7 EG@PO/NR3 254.9 304.3 347.7 397.3 25.3 EG@PO/NR4 242.8 299.7 346.1 400.0 27.5 Notes: T5%, T10%, T20%, T50%—Decomposition temperatures when mass loss is 5%, 10%, 20% and 50%, respectively; W600℃—Residual mass of 600℃. -
[1] 韩景泉, 王绍霖, 岳一莹, 等. 纳米纤维素-聚吡咯/天然橡胶柔性导电弹性体的制备与性能[J]. 复合材料学报, 2018, 35(10):18-29.HAN Jingquan, WANG Shaolin, YUE Yiying, et al. Preparation and characterization of cellulose nanofibers-polypyrrole/natural rubber flexible conductive elastomer[J]. Acta Materiae Compositae Sinica,2018,35(10):18-29(in Chinese). [2] 秦红梅, 邓超然, 李明专, 等. 石墨烯纳米薄片-SiO2/天然橡胶复合材料的导电导热性能[J]. 复合材料学报, 2019, 36(11):2683-2691.QIN Hongmei, DENG Chaoran, LI Mingzhuan, et al. Electrical and thermal properties of nano graphene sheets-SiO2/natural rubber composites[J]. Acta Materiae Compositae Sinica,2019,36(11):2683-2691(in Chinese). [3] 童长征. 天然橡胶期货市场回顾及后市展望[J]. 橡胶科技, 2020, 18(2):69-76.TONG Changzheng. Review and prospect of natural rubber futures market[J]. Rubber Science and Technology,2020,18(2):69-76(in Chinese). [4] ZHANG C, WANG J. Natural rubber/dendrimer modified montmorillonite nanocomposites: Mechanical and flame-retardant properties[J]. Materials,2018,11(1):41. doi: 10.3390/ma11010041 [5] 王娜, 栾鸿赫, 张静, 等. 介孔分子筛和Cr2O3协同膨胀阻燃体系对阻燃天然橡胶性能的影响[J]. 复合材料学报, 2017, 34(5):963-969.WANG Na, LUAN Honghe, ZHANG Jing, et al. Synergistic effects of mesoporous molecular sieve and Cr2O3 with intumescent flame retardant on properties of flame-retarded natural rubber[J]. Acta Materiae Compositae Sinica,2017,34(5):963-969(in Chinese). [6] ZHANG X, WANG J, JIA H, et al. Polyvinyl pyrrolidone modified graphene oxide for improving mechanical, thermal conductivity and solvent resistance properties of natural rubber[J]. RSC Advances,2016,6(60):54668-54678. doi: 10.1039/C6RA11601A [7] 闫海泉. 石墨/天然橡胶复合材料导热性能及力学性能的实验研究[D]. 青岛: 青岛科技大学, 2012.YAN Haiquan. Experimental study on the thermal conductivity and mechanical properties of graphite/nature rubber[D]. Qingdao: Qingdao University of Science and Technology, 2012(in Chinese). [8] INTHARAPAT P, NAKASON C, KONGNOO A. Preparation of boric acid supported natural rubber as a reactive flame retardant and its properties[J]. Polymer Degradation & Stability,2016,128:217-227. [9] TAN W L, SALEHABADI A, MOHD ISA M H, et al. Synthesis and physicochemical characterization of organomodified halloysite/epoxidized natural rubber nanocomposites: A potential flame-resistant adhesive[J]. Journal of Materials Science,2016,51(2):1121-1132. doi: 10.1007/s10853-015-9443-9 [10] 赖伟斌. 阻燃天然橡胶的研究[D]. 广州: 华南理工大学, 2015.LAI Weibin. Study on flame retardant natural rubber[D]. Guangzhou: South China University of Technology, 2015(in Chinese). [11] ISMAWI D, HARPER J, ANSARIFAR A. Influence of flame retardant additives on the flammability behaviour of natural rubber (NR)[J]. Journal of Rubber Research,2008,11(4):223-236. [12] 赵艺. 树枝形阻燃蒙脱土的制备及其在橡胶中的应用性能研究[D]. 上海: 上海工程技术大学, 2014.ZHAO Yi. Preparation of dendritic and flame retardant montmorillonite and its application into rubber composites[D]. Shanghai: Shanghai Univeristy of Engineering Science, 2014(in Chinese). [13] 王娜, 于芳, 王升, 等. 笼状季戊四醇磷酸酯-可膨胀石墨协同阻燃天然橡胶[J]. 复合材料学报, 2018, 35(11):54-60.WANG Na, YU Fang, WANG Sheng, et al. Caged pentaerythritol phosphate-expandable graphite synergistic flame retardant natural rubber[J]. Acta Materiae Compositae Sinica,2018,35(11):54-60(in Chinese). [14] CHEN X, SONG W, LIU J, et al. Synergistic flame-retardant effects between aluminum hypophosphite and expandable graphite in silicone rubber composites[J]. Journal of Thermal Analysis & Calorimetry,2015,120(3):1819-1826. [15] WANG N, XU G, WU Y, et al. The influence of expandable graphite on double-layered microcapsules in intumescent flame-retardant natural rubber composites[J]. Journal of Thermal Analysis & Calorimetry,2016,123(2):1239-1251. [16] WANG B, SHENG H, SHI Y, et al. Recent advances for microencapsulation of flame retardant[J]. Polymer Degradation & Stability,2015,113:96-109. [17] WANG N, WU Y, MI L, et al. The influence of silicone shell on double-layered microcapsules in intumescent flame-retardant natural rubber composites[J]. Journal of Thermal Analysis & Calorimetry,2014,118(1):349-357. [18] CHENG J J, QU W J, SUN S H. Mechanical properties improvement and fire hazard reduction of expandable graphite microencapsulated in rigid polyurethane foams[J]. Polymer Composites,2019,40(s2):1006-1014. doi: 10.1002/pc.24786 [19] SONG J, MA L, HE Y, et al. Modified graphite filled natural rubber composites with good thermal conductivity[J]. Chinese Journal of Chemical Engineering,2015,23(5):853-859. doi: 10.1016/j.cjche.2014.05.022 [20] HONG L, HU X. Mechanical and flame retardant properties and microstructure of expandable graphite/silicone rubber composites[J]. Journal of Macromolecular Science Part B,2016,55(2):175-187. doi: 10.1080/00222348.2015.1138029 [21] 张鹏中. 氧化石墨烯-微胶囊/聚合物复合材料的制备及摩擦学性能研究[D]. 兰州: 兰州理工大学, 2016.ZHANG Pengzhong. Preparation and tribological properties of graphene oxide-microcapsule/polymer composites[D]. Lanzhou: Lanzhou University of Technology, 2016(in Chinese). [22] ZHANG H, XING F, CUI H, et al. A novel phase-change cement composite for thermal energy storage: Fabrication, thermal and mechanical properties[J]. Applied Energy,2016,170:130-139. doi: 10.1016/j.apenergy.2016.02.091 [23] 中国国家标准化管理委员会. 橡胶燃烧性能的测定: GB/T 10707—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People’s Republic of China. Rubber: Determination of the burning: GB/T 10707—2008[S]. Beijing: China Standards Press, 2008(in Chinese). [24] International Organization for Standardization. Reaction-to-fire tests: Heat release, smoke production and mass loss rate Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement): ISO 5660—1∶2015[S]. London: British Standards Institution, 2015. [25] 宋翔宇. 低烟气毒性阻燃环氧树脂的制备及其火灾行为研究[D]. 成都: 西南交通大学, 2015.SONG Xiangyu. Preparation of low toxicity of flue gas flame retardant epoxy resin and its fire behavior research[D]. Chengdu: Southwest Jiaotong University, 2015(in Chinese). [26] 边炳鑫. 石墨加工与石墨材料[M]. 徐州: 中国矿业大学出版社, 2014.BIAN Bingxin. Graphite processing and graphite materials[M]. Xuzhou: China University of Mining and Technology Press, 2014(in Chinese).