留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚脲材料包覆可膨胀石墨微胶囊阻燃天然橡胶

程家骥 王旭 王浩东

程家骥, 王旭, 王浩东. 聚脲材料包覆可膨胀石墨微胶囊阻燃天然橡胶[J]. 复合材料学报, 2021, 38(1): 232-238. doi: 10.13801/j.cnki.fhclxb.20200513.002
引用本文: 程家骥, 王旭, 王浩东. 聚脲材料包覆可膨胀石墨微胶囊阻燃天然橡胶[J]. 复合材料学报, 2021, 38(1): 232-238. doi: 10.13801/j.cnki.fhclxb.20200513.002
CHENG Jiaji, WANG Xu, WANG Haodong. Expandable graphite microencapsulated with polyurea shell flame retardant natural rubber[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 232-238. doi: 10.13801/j.cnki.fhclxb.20200513.002
Citation: CHENG Jiaji, WANG Xu, WANG Haodong. Expandable graphite microencapsulated with polyurea shell flame retardant natural rubber[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 232-238. doi: 10.13801/j.cnki.fhclxb.20200513.002

聚脲材料包覆可膨胀石墨微胶囊阻燃天然橡胶

doi: 10.13801/j.cnki.fhclxb.20200513.002
基金项目: 国家自然科学基金(51806113)
详细信息
    通讯作者:

    程家骥,博士,副教授,硕士生导师,研究方向为阻燃材料 E-mail:cjj_cumt@163.com

  • 中图分类号: TQ314

Expandable graphite microencapsulated with polyurea shell flame retardant natural rubber

  • 摘要: 以聚脲材料为壳材包覆可膨胀石墨(EG),并在囊壁上嵌入CuO提高壁材的导热性能,从而获得可膨胀石墨微胶囊(EG@PO),然后将制备的EG@PO与聚磷酸铵(APP)复合应用于阻燃天然橡胶(NR)。通过SEM、热失重和红外光谱分析等手段对EG@PO进行表征。通过极限氧指数、垂直燃烧测试、热失重测试、锥形量热仪和导热系数测定仪等手段测试不同添加量的EG@PO对NR热稳定性、阻燃性、产烟性和热传导性等的影响。结果表明,成功利用聚脲材料包覆EG,并在囊壁上嵌入CuO。EG@PO和APP协同作用提高了NR的阻燃性能和热稳定性。当EG@PO添加量为6 g时,EG@PO/NR复合材料的极限氧指数为28.3%,垂直燃烧法测试结果达到V-0级,600℃时的残炭量达到27.5%。且热释放速率和总热释放量均出现大幅下降,相比于纯天然橡胶,最大热释速率和总热释放量分别降低了49.8%和25.7%,分别为467.7 kW/m2和48.4 MJ/m2。与此同时,镶嵌在微胶囊囊壁中的CuO有助于热量在NR基体和EG之间的传递,EG@PO/NR复合材料的导热系数最高为0.266 W/(m·K)。

     

  • 图  1  EG和EG@PO的SEM图像

    Figure  1.  SEM images of EG and EG@PO

    图  2  EG和EG@PO的FTIR图谱

    Figure  2.  FTIR spectra of EG and EG@PO

    图  3  EG和EG@PO在N2中的TG曲线

    Figure  3.  TG curves of EG and EG@PO in N2

    图  4  EG@PO/NR复合材料在N2中的TG曲线

    Figure  4.  TG curves of EG@PO/NR composites in N2

    图  5  EG@PO/NR复合材料的热释放速率和总热释放量

    Figure  5.  Heat release rate and total heat release of EG@PO/NR composites

    图  6  EG@PO/NR复合材料的烟气释放速率和总烟气释放量

    Figure  6.  Smoke production rate and total smoke release of EG@PO/NR composites

    图  7  EG@PO/NR复合材料的导热系数

    Figure  7.  Thermal conductivities of EG@PO/NR composites

    表  1  嵌入CuO的聚脲材料包覆可膨胀石墨微胶囊/天然橡胶(EG@PO/NR)复合材料的配方

    Table  1.   Formula of expandable graphite microencapsulated with polyurea and CuO/natural rubber (EG@PO/NR) composites

    SampleNR/gEG@PO/gAPP/g
    EG@PO/NR0 100 0 0
    EG@PO/NR1 100 3 3
    EG@PO/NR2 100 6 6
    EG@PO/NR3 100 9 9
    EG@PO/NR4 100 12 12
    Note: APP—Ammonium polyphosphate.
    下载: 导出CSV

    表  2  EG@PO/NR复合材料的极限氧指数(LOI)和垂直燃烧等级

    Table  2.   Limiting oxygen index (LOI) and vertical burn rating of EG@PO/NR composites

    SampleLOI/%Vertical burn rating
    EG@PO/NR0 17.6 No rating
    EG@PO/NR1 19.8 No rating
    EG@PO/NR2 23.8 V-1
    EG@PO/NR3 26.7 V-0
    EG@PO/NR4 28.3 V-0
    下载: 导出CSV

    表  3  EG@PO/NR复合材料在N2气氛中TG测试结果

    Table  3.   TG test data of EG@PO/NR composites in N2

    SampleT5%/℃T10%/℃T20%/℃T50%/℃W600℃/%
    EG@PO/NR0 286.6 336.2 359.3 385.0 19.9
    EG@PO/NR1 272.3 316.4 351.5 392.2 22.6
    EG@PO/NR2 264.6 311.1 349.6 394.6 24.7
    EG@PO/NR3 254.9 304.3 347.7 397.3 25.3
    EG@PO/NR4 242.8 299.7 346.1 400.0 27.5
    Notes: T5%, T10%, T20%, T50%—Decomposition temperatures when mass loss is 5%, 10%, 20% and 50%, respectively; W600℃—Residual mass of 600℃.
    下载: 导出CSV
  • [1] 韩景泉, 王绍霖, 岳一莹, 等. 纳米纤维素-聚吡咯/天然橡胶柔性导电弹性体的制备与性能[J]. 复合材料学报, 2018, 35(10):18-29.

    HAN Jingquan, WANG Shaolin, YUE Yiying, et al. Preparation and characterization of cellulose nanofibers-polypyrrole/natural rubber flexible conductive elastomer[J]. Acta Materiae Compositae Sinica,2018,35(10):18-29(in Chinese).
    [2] 秦红梅, 邓超然, 李明专, 等. 石墨烯纳米薄片-SiO2/天然橡胶复合材料的导电导热性能[J]. 复合材料学报, 2019, 36(11):2683-2691.

    QIN Hongmei, DENG Chaoran, LI Mingzhuan, et al. Electrical and thermal properties of nano graphene sheets-SiO2/natural rubber composites[J]. Acta Materiae Compositae Sinica,2019,36(11):2683-2691(in Chinese).
    [3] 童长征. 天然橡胶期货市场回顾及后市展望[J]. 橡胶科技, 2020, 18(2):69-76.

    TONG Changzheng. Review and prospect of natural rubber futures market[J]. Rubber Science and Technology,2020,18(2):69-76(in Chinese).
    [4] ZHANG C, WANG J. Natural rubber/dendrimer modified montmorillonite nanocomposites: Mechanical and flame-retardant properties[J]. Materials,2018,11(1):41. doi: 10.3390/ma11010041
    [5] 王娜, 栾鸿赫, 张静, 等. 介孔分子筛和Cr2O3协同膨胀阻燃体系对阻燃天然橡胶性能的影响[J]. 复合材料学报, 2017, 34(5):963-969.

    WANG Na, LUAN Honghe, ZHANG Jing, et al. Synergistic effects of mesoporous molecular sieve and Cr2O3 with intumescent flame retardant on properties of flame-retarded natural rubber[J]. Acta Materiae Compositae Sinica,2017,34(5):963-969(in Chinese).
    [6] ZHANG X, WANG J, JIA H, et al. Polyvinyl pyrrolidone modified graphene oxide for improving mechanical, thermal conductivity and solvent resistance properties of natural rubber[J]. RSC Advances,2016,6(60):54668-54678. doi: 10.1039/C6RA11601A
    [7] 闫海泉. 石墨/天然橡胶复合材料导热性能及力学性能的实验研究[D]. 青岛: 青岛科技大学, 2012.

    YAN Haiquan. Experimental study on the thermal conductivity and mechanical properties of graphite/nature rubber[D]. Qingdao: Qingdao University of Science and Technology, 2012(in Chinese).
    [8] INTHARAPAT P, NAKASON C, KONGNOO A. Preparation of boric acid supported natural rubber as a reactive flame retardant and its properties[J]. Polymer Degradation & Stability,2016,128:217-227.
    [9] TAN W L, SALEHABADI A, MOHD ISA M H, et al. Synthesis and physicochemical characterization of organomodified halloysite/epoxidized natural rubber nanocomposites: A potential flame-resistant adhesive[J]. Journal of Materials Science,2016,51(2):1121-1132. doi: 10.1007/s10853-015-9443-9
    [10] 赖伟斌. 阻燃天然橡胶的研究[D]. 广州: 华南理工大学, 2015.

    LAI Weibin. Study on flame retardant natural rubber[D]. Guangzhou: South China University of Technology, 2015(in Chinese).
    [11] ISMAWI D, HARPER J, ANSARIFAR A. Influence of flame retardant additives on the flammability behaviour of natural rubber (NR)[J]. Journal of Rubber Research,2008,11(4):223-236.
    [12] 赵艺. 树枝形阻燃蒙脱土的制备及其在橡胶中的应用性能研究[D]. 上海: 上海工程技术大学, 2014.

    ZHAO Yi. Preparation of dendritic and flame retardant montmorillonite and its application into rubber composites[D]. Shanghai: Shanghai Univeristy of Engineering Science, 2014(in Chinese).
    [13] 王娜, 于芳, 王升, 等. 笼状季戊四醇磷酸酯-可膨胀石墨协同阻燃天然橡胶[J]. 复合材料学报, 2018, 35(11):54-60.

    WANG Na, YU Fang, WANG Sheng, et al. Caged pentaerythritol phosphate-expandable graphite synergistic flame retardant natural rubber[J]. Acta Materiae Compositae Sinica,2018,35(11):54-60(in Chinese).
    [14] CHEN X, SONG W, LIU J, et al. Synergistic flame-retardant effects between aluminum hypophosphite and expandable graphite in silicone rubber composites[J]. Journal of Thermal Analysis & Calorimetry,2015,120(3):1819-1826.
    [15] WANG N, XU G, WU Y, et al. The influence of expandable graphite on double-layered microcapsules in intumescent flame-retardant natural rubber composites[J]. Journal of Thermal Analysis & Calorimetry,2016,123(2):1239-1251.
    [16] WANG B, SHENG H, SHI Y, et al. Recent advances for microencapsulation of flame retardant[J]. Polymer Degradation & Stability,2015,113:96-109.
    [17] WANG N, WU Y, MI L, et al. The influence of silicone shell on double-layered microcapsules in intumescent flame-retardant natural rubber composites[J]. Journal of Thermal Analysis & Calorimetry,2014,118(1):349-357.
    [18] CHENG J J, QU W J, SUN S H. Mechanical properties improvement and fire hazard reduction of expandable graphite microencapsulated in rigid polyurethane foams[J]. Polymer Composites,2019,40(s2):1006-1014. doi: 10.1002/pc.24786
    [19] SONG J, MA L, HE Y, et al. Modified graphite filled natural rubber composites with good thermal conductivity[J]. Chinese Journal of Chemical Engineering,2015,23(5):853-859. doi: 10.1016/j.cjche.2014.05.022
    [20] HONG L, HU X. Mechanical and flame retardant properties and microstructure of expandable graphite/silicone rubber composites[J]. Journal of Macromolecular Science Part B,2016,55(2):175-187. doi: 10.1080/00222348.2015.1138029
    [21] 张鹏中. 氧化石墨烯-微胶囊/聚合物复合材料的制备及摩擦学性能研究[D]. 兰州: 兰州理工大学, 2016.

    ZHANG Pengzhong. Preparation and tribological properties of graphene oxide-microcapsule/polymer composites[D]. Lanzhou: Lanzhou University of Technology, 2016(in Chinese).
    [22] ZHANG H, XING F, CUI H, et al. A novel phase-change cement composite for thermal energy storage: Fabrication, thermal and mechanical properties[J]. Applied Energy,2016,170:130-139. doi: 10.1016/j.apenergy.2016.02.091
    [23] 中国国家标准化管理委员会. 橡胶燃烧性能的测定: GB/T 10707—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Rubber: Determination of the burning: GB/T 10707—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [24] International Organization for Standardization. Reaction-to-fire tests: Heat release, smoke production and mass loss rate Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement): ISO 5660—1∶2015[S]. London: British Standards Institution, 2015.
    [25] 宋翔宇. 低烟气毒性阻燃环氧树脂的制备及其火灾行为研究[D]. 成都: 西南交通大学, 2015.

    SONG Xiangyu. Preparation of low toxicity of flue gas flame retardant epoxy resin and its fire behavior research[D]. Chengdu: Southwest Jiaotong University, 2015(in Chinese).
    [26] 边炳鑫. 石墨加工与石墨材料[M]. 徐州: 中国矿业大学出版社, 2014.

    BIAN Bingxin. Graphite processing and graphite materials[M]. Xuzhou: China University of Mining and Technology Press, 2014(in Chinese).
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1601
  • HTML全文浏览量:  416
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-18
  • 录用日期:  2020-05-05
  • 网络出版日期:  2020-05-14
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回